Zobrazeno 1 - 10
of 1 269
pro vyhledávání: '"log‐Gaussian Cox process"'
Autor:
Watson, Samuel I
The R package rts2 provides data manipulation and model fitting tools for Log Gaussian Cox Process (LGCP) models. LGCP models are a key method for disease and other types of surveillance, and provide a means of predicting risk across an area of inter
Externí odkaz:
http://arxiv.org/abs/2403.09448
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Valente, Fernanda1 (AUTHOR), Laurini, Márcio1 (AUTHOR) laurini@fearp.usp.br
Publikováno v:
Fire (2571-6255). May2024, Vol. 7 Issue 5, p170. 26p.
Autor:
Flagg, Kenneth1 (AUTHOR) kenneth.flagg@montana.edu, Hoegh, Andrew1 (AUTHOR)
Publikováno v:
Journal of Applied Statistics. Apr2023, Vol. 50 Issue 5, p1128-1151. 24p. 4 Color Photographs, 2 Diagrams, 7 Graphs.
Autor:
Li, Dayi, Eadie, Gwendolyn M., Abraham, Roberto G., Brown, Patrick E., Harris, William E., Janssens, Steven R., Romanowsky, Aaron J., van Dokkum, Pieter, Danieli, Shany
We introduce a new method for detecting ultra-diffuse galaxies by searching for over-densities in intergalactic globular cluster populations. Our approach is based on an application of the log-Gaussian Cox process, which is a commonly used model in t
Externí odkaz:
http://arxiv.org/abs/2204.05487
We propose a statistical model for narrowing line shapes in spectroscopy that are well approximated as linear combinations of Lorentzian or Voigt functions. We introduce a log-Gaussian Cox process to represent the peak locations thereby providing unc
Externí odkaz:
http://arxiv.org/abs/2202.13120
Lightning is a destructive and highly visible product of severe storms, yet there is still much to be learned about the conditions under which lightning is most likely to occur. The GOES-16 and GOES-17 satellites, launched in 2016 and 2018 by NOAA an
Externí odkaz:
http://arxiv.org/abs/2111.15670
Autor:
Laxton, Megan Ruth1 (AUTHOR), Nightingale, Glenna2 (AUTHOR) Glenna.Nightingale@ed.ac.uk, Lindgren, Finn3 (AUTHOR), Sivakumaran, Arjuna4 (AUTHOR), Othieno, Richard4 (AUTHOR)
Publikováno v:
PLoS ONE. 11/21/2023, Vol. 18 Issue 11, p1-20. 20p.
Publikováno v:
Environmental and Ecological Statistics (2021)
We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points x affects another set of points y but not vice versa. We use the model to investigate the effect of large trees to the locations of seedlings. In the
Externí odkaz:
http://arxiv.org/abs/2005.01962
Autor:
Fernanda Valente, Márcio Laurini
Publikováno v:
Fire, Vol 7, Iss 5, p 170 (2024)
We present a novel statistical methodology for analyzing shifts in spatio-temporal fire occurrence patterns within the Brazilian Pantanal, utilizing remote sensing data. Our approach employs a Log-Gaussian Cox Process to model the spatiotemporal dyna
Externí odkaz:
https://doaj.org/article/b5390b99e53f491aa98bf13c371ac106