Zobrazeno 1 - 10
of 1 268
pro vyhledávání: '"linear separability"'
Autor:
Ilona Kulikovskikh
Publikováno v:
Компьютерная оптика, Vol 44, Iss 2, Pp 282-289 (2020)
Previous research in deep learning indicates that iterations of the gradient descent, over separable data converge toward the L2 maximum margin solution. Even in the absence of explicit regularization, the decision boundary still changes even if the
Externí odkaz:
https://doaj.org/article/76fbb98b7a5c444f80a76591fb859acb
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gorban, A. N., Tyukin, I. Y.
Publikováno v:
Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2018 Apr . 376(2118), 1-18.
Externí odkaz:
https://www.jstor.org/stable/26600947
Publikováno v:
eLife, Vol 10 (2021)
What factors constrain the arrangement of the multiple fields of a place cell? By modeling place cells as perceptrons that act on multiscale periodic grid-cell inputs, we analytically enumerate a place cell’s repertoire – how many field arrangeme
Externí odkaz:
https://doaj.org/article/d3f2b3290f9e440bb5f64f72c56b6d80
Publikováno v:
Psychological Review. 129:1211-1248
We introduce the Category Abstraction Learning (CAL) model, a cognitive framework formally describing category learning built on similarity-based generalization, dissimilarity-based abstraction, two attention learning mechanisms, error-driven knowled
Publikováno v:
Information Processing in Agriculture. 9:224-232
It is necessary that vision system should aid laser-cutting manipulator to position the specified part of each maize seed for getting the slice breeding genotype analysis with high throughput. Each of trivial maize seeds should be recognized and posi
Autor:
Marco Gherardi
Publikováno v:
Entropy, Vol 23, Iss 3, p 305 (2021)
Linear separability, a core concept in supervised machine learning, refers to whether the labels of a data set can be captured by the simplest possible machine: a linear classifier. In order to quantify linear separability beyond this single bit of i
Externí odkaz:
https://doaj.org/article/8e11920e29094ef5bec612828e3ad4d9
Publikováno v:
IEEE Transactions on Information Theory. 68:1259-1278
This paper formulates a distributed computation problem, where a master asks $N$ distributed workers to compute a linearly separable function. The task function can be expressed as $K_c$ linear combinations of $K$ messages, where each message is a fu
Autor:
Luke A. Rosedahl, F. Gregory Ashby
Publikováno v:
J Exp Psychol Learn Mem Cogn
In rule-based (RB) category-learning tasks, the optimal strategy is a simple explicit rule, whereas in information-integration (II) tasks, the optimal strategy is impossible to describe verbally. This study investigates the effects of two different c