Zobrazeno 1 - 10
of 178
pro vyhledávání: '"large vocabulary continuous speech recognition"'
Publikováno v:
Journal of Computational and Graphical Statistics, 2001 Mar 01. 10(1), 158-184.
Externí odkaz:
https://www.jstor.org/stable/1391032
Autor:
Paula Georgiana ZĂLHAN
Publikováno v:
Journal of Public Administration, Finance and Law, Vol 5, Iss 10, Pp 181-191 (2016)
The aim of this paper is to present a brief survey in the field of Automatic Speech Recognition (ASR) and major advances made in the last decades of research in order to highlight the fundamental progress that has been made so far. After years of dev
Externí odkaz:
https://doaj.org/article/bb7fff23dbe14fe0aaf5270f477504d0
Autor:
Zălhan, Paula Georgiana
Publikováno v:
Journal of Public Administration, Finance and Law. (10):181-191
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=743832
Autor:
Cornaggia-Urrigshardt, Alessia, Gökgöz, Fahrettin, Kurth, Frank, Schmitz, Hans-Christian, Wilkinghoff, Kevin
Publikováno v:
Procedia Computer Science. 205:218-228
Automatic speech recognition (ASR) in the military domain can enable voice user interfaces of command & control information systems (C2IS) and, thus, improve the usability of C2IS. It can also serve intelligence (COMINT) by supporting the monitoring
Publikováno v:
Telfor Journal, Vol 6, Iss 2, Pp 109-114 (2014)
This paper describes the procedure of collecting speech and corresponding textual data and the processing needed to create a repository for training a LVCSR system for the Serbian language. The speech database for Serbian consists of speech recording
Externí odkaz:
https://doaj.org/article/8f83851bb02f4d6393cf63e88c0e1d96
Publikováno v:
Advances in Electrical and Electronic Engineering, Vol 11, Iss 5, Pp 398-403 (2013)
This paper describes the process of categorization of unorganized text data gathered from the Internet to the in-domain and out-of-domain data for better domain-specific language modeling and speech recognition. An algorithm for text categorization a
Externí odkaz:
https://doaj.org/article/a7464cfb348f4aeeb6363a23cb58d932
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kocour, Martin
V dnešnej dobe systémy rozpoznávania reči s veľkým slovníkom dosahujú pomerne vysoké presnosti. Za ich výsledkami však často stoja desiatky ba až stovky hodín manuálne oanotovaných trénovacích dát. Takéto dáta sú často bežne n
Externí odkaz:
http://www.nusl.cz/ntk/nusl-399164
Publikováno v:
[Research Report] LIG lab; LNE. 2019
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::5613aedffbaf624e9741334e0ef20a74
https://hal.archives-ouvertes.fr/hal-02131931
https://hal.archives-ouvertes.fr/hal-02131931
Publikováno v:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018, Calgary, Alberta, Canada
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018, Calgary, Alberta, Canada
International audience; In this paper, we address a relatively new task: prediction of ASR performance on unseen broadcast programs. We first propose an heterogenous French corpus dedicated to this task. Two prediction approaches are compared: a stat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1b4c0eead8637142717c815adfc032b1
https://hal.science/hal-01709779
https://hal.science/hal-01709779