Zobrazeno 1 - 10
of 177
pro vyhledávání: '"large samples"'
Autor:
Yuanhao Xu, Kairong Lin, Caihong Hu, Xiaohong Chen, Jingwen Zhang, Mingzhong Xiao, Chong‐Yu Xu
Publikováno v:
Earth's Future, Vol 12, Iss 10, Pp n/a-n/a (2024)
Abstract The formation of floods, as a complex physical process, exhibits dynamic changes in its driving factors over time and space under climate change. Due to the black‐box nature of deep learning, its use alone does not enhance understanding of
Externí odkaz:
https://doaj.org/article/77d35f9d942b47a8b282dddb037b7fa1
Autor:
Yushan Yin
Publikováno v:
Frontiers in Computational Neuroscience, Vol 17 (2023)
The advent of the Big Data era and the rapid development of the Internet of Things have led to a dramatic increase in the amount of data from various time series. How to classify, correlation rule mining and prediction of these large-sample time seri
Externí odkaz:
https://doaj.org/article/5581feb589c44bb5b823f92971c3e584
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Horacio Merchant-Larios, David M. Giraldo-Gomez, Adriana Castro-Dominguez, Alejandro Marmolejo-Valencia
Publikováno v:
Frontiers in Cell and Developmental Biology, Vol 11 (2023)
Although the automated image acquisition with the focused ion beam scanning electron microscope (FIB-SEM) provides volume reconstructions, volume analysis of large samples remains challenging. Here, we present a workflow that combines a modified samp
Externí odkaz:
https://doaj.org/article/d517ab34860d4f588ff7f966083a253b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Компьютерная оптика, Vol 45, Iss 2, Pp 253-260 (2021)
A nonparametric algorithm for automatic classification of large statistical data sets is proposed. The algorithm is based on a procedure for optimal discretization of the range of values of a random variable. A class is a compact group of observation
Externí odkaz:
https://doaj.org/article/ed62065b66704c87b8de9f63103850c8
Autor:
Kresojević Bojan, Gajić Milica
Publikováno v:
ECONOMICS, Vol 7, Iss 2, Pp 157-167 (2019)
In this paper will be analyzed the application of the t-test against the nonparametric Mann - Whitney test in the analysis of health insurance benefit costs in the Republic of Srpska on large samples. This research aims to examine which method produc
Externí odkaz:
https://doaj.org/article/190560b5cc1e47069aa27848b050d18c
Autor:
Jun Ma, Zewei Wu, Xiaojuan Zha, Xinying Zhu, Wenbo Li, Mingfei Jiang, Shuyi Wang, Shouzhi Wu, Yufeng Wen
Publikováno v:
Clinical and Experimental Hypertension, Vol 41, Iss 8, Pp 702-707 (2019)
OBJECTIVE: Some studies have reported that both serum cystatin C (Cys C) and dyslipidemia are independently associated with hypertension. However, the combined effect of the two factors is still unknown. The present study was aimed at investigating t
Externí odkaz:
https://doaj.org/article/3fd69712d0814f93a1210903c7d637dd
Publikováno v:
Mathematics, Vol 10, Iss 14, p 2402 (2022)
There are three main problems for classical kernel density estimation in its application: boundary problem, over-smoothing problem of high (low)-density region and low-efficiency problem of large samples. A new improved model of multivariate adaptive
Externí odkaz:
https://doaj.org/article/ca2120ac5f884a01a4671cdbdbc200e8