Zobrazeno 1 - 10
of 812
pro vyhledávání: '"laplacian eigenvalues"'
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 402-410 (2024)
Let GG be a graph with n(G)n\left(G) vertices and e(G)e\left(G) edges, and Sk(G){S}_{k}\left(G) be the sum of the kk largest Laplacian eigenvalues of GG. Brouwer conjectured that Sk(G)≤e(G)+k+12{S}_{k}\left(G)\le e\left(G)+\left(\phantom{\rule[-0.7
Externí odkaz:
https://doaj.org/article/5e98858bcdd5408ab7e8cbf6826ae275
Autor:
Chen Guantao, Tura Fernando C.
Publikováno v:
Special Matrices, Vol 12, Iss 1, Pp 68-81 (2024)
In this article, we give an O(n)O\left(n) time and space algorithm for obtaining the Laplacian eigenvalues of a cograph. This approach is more efficient as there is no need to directly compute the eigenvalues of Laplacian matrix related to this class
Externí odkaz:
https://doaj.org/article/80b98df2fb1b4ba79edb311bafb83545
Publikováno v:
Transactions on Combinatorics, Vol 12, Iss 4, Pp 207-216 (2023)
In this paper, we determine the distance Laplacian and distance signless Laplacian spectrum of generalized wheel graphs and a new class of graphs called dumbbell graphs.
Externí odkaz:
https://doaj.org/article/406a1e13fa6a44649fc5bd1f795932bb
Publikováno v:
IEEE Access, Vol 12, Pp 135265-135282 (2024)
Anomaly detection in multivariate time series (MTS) data is crucial for identifying unusual behaviors or events that may indicate system failures, fraud, or other issues. In many real-world scenarios, labeled anomalies are scarce or non-existent, mak
Externí odkaz:
https://doaj.org/article/b858e28e0ea04f20a3bdab14086bf7e9
Publikováno v:
AIMS Mathematics, Vol 8, Iss 12, Pp 29008-29016 (2023)
For a $ \nu $-vertex connected graph $ \Gamma $, we consider the reciprocal distance Laplacian matrix defined as $ RD^L(\Gamma) = RT(\Gamma)-RD(\Gamma) $, i.e., $ RD^L(\Gamma) $ is the difference between the diagonal matrix of the reciprocal distance
Externí odkaz:
https://doaj.org/article/82c451bf18714230b0b6dfb03c2e78be
Publikováno v:
Transactions on Combinatorics, Vol 12, Iss 3, Pp 131-142 (2023)
Let $G$ be a simple connected graph of order $n$ with $m$ edges. Denote by $% \gamma _{1}^{+}\geq \gamma _{2}^{+}\geq \cdots \geq \gamma _{n}^{+}\geq 0$ the normalized signless Laplacian eigenvalues of $G$. In this work, we define the normalized sign
Externí odkaz:
https://doaj.org/article/9b5677d1536144d8b4d58e77bbf7b9af
Autor:
Pirzada S., Haq Mohd Abrar Ul
Publikováno v:
Acta Universitatis Sapientiae: Informatica, Vol 15, Iss 1, Pp 38-45 (2023)
Let G be a connected graph with n vertices, m edges. The distance signless Laplacian matrix DQ(G) is defined as DQ(G) = Diag(Tr(G)) + D(G), where Diag(Tr(G)) is the diagonal matrix of vertex transmissions and D(G) is the distance matrix of G. The dis
Externí odkaz:
https://doaj.org/article/d8770743b6504d92aff4ac5e643fdea6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.