Zobrazeno 1 - 4
of 4
pro vyhledávání: '"kriging-menetelmä"'
For offline data-driven multiobjective optimization problems (MOPs), no new data is available during the optimization process. Approximation models (or surrogates) are first built using the provided offline data and an optimizer, e.g. a multiobjectiv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b81c9a3e3b4e46da7eef06c74f626f9
http://urn.fi/URN:NBN:fi:jyu-202306133715
http://urn.fi/URN:NBN:fi:jyu-202306133715
In offline data-driven multiobjective optimization, no new data is available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective evolutionary algorithm can be ut
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5928d01c1c9616934d8fabf43296addb
http://urn.fi/URN:NBN:fi:jyu-202210054798
http://urn.fi/URN:NBN:fi:jyu-202210054798
Autor:
Bhupinder Singh Saini, Michael Emmerich, Atanu Mazumdar, Bekir Afsar, Babooshka Shavazipour, Kaisa Miettinen
We introduce novel concepts to solve multiobjective optimization problems involving (computationally) expensive function evaluations and propose a new interactive method called O-NAUTILUS. It combines ideas of trade-off free search and navigation (wh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b2d45539ce8b59d153bfc2f6ee716b05
http://urn.fi/URN:NBN:fi:jyu-202201111077
http://urn.fi/URN:NBN:fi:jyu-202201111077
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030637095
BIOMA
BIOMA
We propose a framework for solving offline data-driven multiobjective optimization problems in an interactive manner. No new data becomes available when solving offline problems. We fit surrogate models to the data to enable optimization, which intro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e69c0b59f13528212a423257ecbf5e9
http://urn.fi/URN:NBN:fi:jyu-202011266788
http://urn.fi/URN:NBN:fi:jyu-202011266788