Zobrazeno 1 - 10
of 128
pro vyhledávání: '"kissing number problem"'
We propose a new duality scheme based on a sequence of smooth minorants of the weighted-l1 penalty func- tion, interpreted as a parametrized sequence of augmented Lagrangians, to solve non-convex constrained optimization problems. For the induced seq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::173d11b8c9dd873c6c03462c5fd6a17d
https://hdl.handle.net/11541.2/148007
https://hdl.handle.net/11541.2/148007
Autor:
Cayo Dória, Plinio G. P. Murillo
Publikováno v:
Proceedings of the American Mathematical Society. 149:4595-4607
In this article we construct a sequence $\{M_i\}$ of non compact finite volume hyperbolic $3$-manifolds whose kissing number grows at least as $\mathrm{vol}(M_i)^{\frac{31}{27}-\epsilon}$ for any $\epsilon>0$. This extends a previous result due to Sc
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexey Glazyrin
Publikováno v:
Discrete & Computational Geometry. 69:931-935
In this note, we give a short solution of the kissing number problem in dimension three.
3 pages
3 pages
Publikováno v:
2021 IEEE Information Theory Workshop (ITW2021)
2021 IEEE Information Theory Workshop (ITW2021), Oct 2021, Kanazawa, Japan
HAL
ITW
2021 IEEE Information Theory Workshop (ITW2021), Oct 2021, Kanazawa, Japan
HAL
ITW
International audience; We use linear programming (LP) to derive upper and lower bounds on the "kissing number" A d of any q-ary code C with distance distribution frequencies Ai, in terms of the given parameters (n, M, d). In particular, a polynomial
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df1f2c0a7627fb8a24196ba69eb4cf66
https://hal.telecom-paris.fr/hal-03323516/document
https://hal.telecom-paris.fr/hal-03323516/document
Publikováno v:
SIAM Journal on Discrete Mathematics. 33:1313-1325
We generalize Banaszczyk's seminal tail bound for the Gaussian mass of a lattice to a wide class of test functions. From this we obtain quite general transference bounds, as well as bounds on the number of lattice points contained in certain bodies.
Publikováno v:
Similarity Search and Applications ISBN: 9783030896560
SISAP
SISAP
The dimension of the space within which the data lives is a major driver for the performance of many processing operations. However, global dimensionality cannot be blindly trusted as the data may lie on structures of lower local dimensionality withi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9ab936e8609863b6fe575c9b1416bdd9
https://doi.org/10.1007/978-3-030-89657-7_14
https://doi.org/10.1007/978-3-030-89657-7_14
Autor:
Maria Dostert, Alexander Kolpakov
This paper provides upper and lower bounds on the kissing number of congruent radius $r > 0$ spheres in hyperbolic $\mathbb{H}^n$ and spherical $\mathbb{S}^n$ spaces, for $n\geq 2$. For that purpose, the kissing number is replaced by the kissing func
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a2a5aaf21424a721b486f62cc6d81bd1
http://arxiv.org/abs/2003.05547
http://arxiv.org/abs/2003.05547
Autor:
C. Wong, József Solymosi
Publikováno v:
Acta Mathematica Hungarica. 155:47-60
The boundedness of the kissing numbers of convex bodies has been known to Hadwiger [9] for long. We present an application of it to the sum-product estimate $$\max(\mid{\mathcal{A}+\mathcal{A}}\mid,\mid{\mathcal{A}\mathcal{A}}\mid)\gg \frac {\mid{\ma
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.