Zobrazeno 1 - 10
of 421
pro vyhledávání: '"jordan canonical form"'
Autor:
Vasile Pop, Alexandru Negrescu
Publikováno v:
Mathematics, Vol 12, Iss 3, p 360 (2024)
It is well known that in C[X], the product of two polynomials is equal to the product of their greatest common divisor and their least common multiple. In a recent paper, we proved a similar relation between the ranks of matrix polynomials. More prec
Externí odkaz:
https://doaj.org/article/01764ad9998e4ab6a1f1499a71750036
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Oleg Sergiyenko, Alexey Zhirabok, Paolo Mercorelli, Alexander Zuev, Vladimir Filaretov, Vera Tyrsa
Publikováno v:
Technologies, Vol 11, Iss 3, p 72 (2023)
The suggested methods for solving fault diagnosis and estimation problems are based on the use of the Jordan canonical form. The diagnostic observer, virtual sensor, interval, and sliding mode observer design problems are considered. Algorithms have
Externí odkaz:
https://doaj.org/article/c8dadc029387427fb70fe4c4804be9f7
Publikováno v:
مجلة العلوم البحتة والتطبيقية, Vol 20, Iss 1, Pp 182-185 (2021)
In this paper we consider a matrix Hypergeometric differential equation, which are special matrix functions and solution of a specific second order linear differential equation. The aim of this work is to extend a well known theorem on Hypergeometric
Externí odkaz:
https://doaj.org/article/d78c5dea663246408d29fbf2ee121cc5
Autor:
Esinoye, Hannah Abosede
In this thesis, we study the relationship between the generalized eigenvalue problem (GEP) $Ax=\lambda Bx$, and systems of differential equations. We examine both the Jordan canonical form and Kronecker's canonical form (KCF). The first part of this
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-100047
Autor:
I. Matychyn, V. Onyshchenko
Publikováno v:
Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol 66, Iss No 4, Pp 495-500 (2018)
Externí odkaz:
https://doaj.org/article/ecf38bb18d214902bd32e5844342ba90
Autor:
Cui Lu-Bin, Li Ming-Hui
Publikováno v:
Open Mathematics, Vol 16, Iss 1, Pp 897-912 (2018)
The limit point 𝓧 of an approximating rank-R sequence of a tensor Ƶ can be obtained by fitting a decomposition (S, T, U) ⋅ 𝓖 to Ƶ. The decomposition of the limit point 𝓧 = (S, T, U) ⋅ 𝓖 with 𝓖 = blockdiag(𝓖1, … , 𝓖m) can
Externí odkaz:
https://doaj.org/article/c86d69af2b7b4a54aa68df7d19376f91
Autor:
Anghel Nicolae
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 25, Iss 3, Pp 45-58 (2017)
Abstract There is an interesting analogy between the description of the real square roots of 3×3 matrices and the zeros of the (depressed) real quartic polynomials. This analogy, which in fact better explains the nature of the zeros of those polynom
Externí odkaz:
https://doaj.org/article/3aa5f3b8242342c689762e0d86e7363b