Zobrazeno 1 - 10
of 7 447
pro vyhledávání: '"joinings"'
Autor:
Jonathan Davis-Secord
The first comprehensive study of the use of compound words in Old English poetry, homilies, and philosophy, Joinings explores the effect of compounds on style, pace, clarity, and genre in Anglo-Saxon vernacular literature. Jonathan Davis-Secord demon
Autor:
Chaika, Jon, Robertson, Donald
We show that there is a rank 1 transformation that is mildly mixing but does not have minimal self-joinings, answering a question of Thouvenot.
Comment: 46 pages, 6 figures
Comment: 46 pages, 6 figures
Externí odkaz:
http://arxiv.org/abs/2411.08180
Autor:
Ryzhikov, Valery V.
The note is devoted to multiple mixing, spectrum, rank and self-joinings of measure-preserving transformations. We recall famous open problems, discuss related questions and some known results. A hypothetical example of an automorphism of the class $
Externí odkaz:
http://arxiv.org/abs/2405.03641
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The classical result of Patterson and Sullivan says that for a non-elementary convex cocompact subgroup $\Gamma<\text{SO}^\circ (n,1)$, $n\ge 2$, the Hausdorff dimension of the limit set of $\Gamma$ is equal to the critical exponent of $\Gamma$. In t
Externí odkaz:
http://arxiv.org/abs/2302.11100
Autor:
Kim, Dongryul M., Oh, Hee
Let $n, m\ge 2$. Let $\Gamma<\text{SO}^\circ(n+1,1)$ be a Zariski dense convex cocompact subgroup. Let $\rho : \Gamma \to \text{SO}^\circ(m+1,1)$ be a Zariski dense convex cocompact faithful representation and $f:\Lambda\to \mathbb{S}^{m}$ the $\rho$
Externí odkaz:
http://arxiv.org/abs/2302.03552
Autor:
Kim, Dongryul M., Oh, Hee
Let $\Gamma$ be a Zariski dense discrete subgroup of a connected simple real algebraic group $G_1$. We discuss a rigidity problem for discrete faithful representations $\rho:\Gamma\to G_2$ and a surprising role played by higher rank conformal measure
Externí odkaz:
http://arxiv.org/abs/2302.03539
In this paper, a polynomial version of Furstenberg joining is introduced and its structure is investigated. Particularly, it is shown that if all polynomials are non-linear, then almost every ergodic component of the joining is a direct product of an
Externí odkaz:
http://arxiv.org/abs/2301.07881