Zobrazeno 1 - 10
of 36
pro vyhledávání: '"iterative solver method"'
Publikováno v:
Mathematics, Vol 8, Iss 11, p 1950 (2020)
The benefits and properties of iterative splitting methods, which are based on serial versions, have been studied in recent years, this work, we extend the iterative splitting methods to novel classes of parallel versions to solve nonlinear fractiona
Externí odkaz:
https://doaj.org/article/38d5542b693c4e8c98df8e22c31d64ae
Publikováno v:
Mathematics, Vol 8, Iss 3, p 302 (2020)
This article proposes adaptive iterative splitting methods to solve Multiphysics problems, which are related to convection−diffusion−reaction equations. The splitting techniques are based on iterative splitting approaches with adaptive ideas. Bas
Externí odkaz:
https://doaj.org/article/8b968885caf64f13b08bd0ee5ed8ea89
Publikováno v:
Mathematics, Vol 8, Iss 3, p 302 (2020)
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Mathematics
Volume 8
Issue 3
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Mathematics
Volume 8
Issue 3
This article proposes adaptive iterative splitting methods to solve Multiphysics problems, which are related to convection&ndash
diffusion&ndash
reaction equations. The splitting techniques are based on iterative splitting approaches with a
diffusion&ndash
reaction equations. The splitting techniques are based on iterative splitting approaches with a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
instname
[EN] In this paper we propose some modifications in the schemes for the iterative splitting techniques defined in Geiser (2009) for partial differential equations and introduce the parallel version of these modified algorithms. Theoretical results re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38eba187222691c3c8ca03fbbb09f2b2
Autor:
Jürgen Geiser
Publikováno v:
Journal of Computational and Applied Mathematics. 231:815-827
In this article we consider iterative operator-splitting methods for nonlinear differential equations with respect to their eigenvalues. The main focus of the proposed idea is the fixed-point iterative scheme that linearizes our underlying equations.
Autor:
Geiser, Jürgen, Küttel, Felix
In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by eletric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b257aeefc1062d4662cf280e56c7e3f
Autor:
Geiser, Jürgen, Elbiomy, Mahmoud
In this paper, we discuss higher-order operator-splitting methods done by disentanglement methods. The idea is based on computing best fitted exponents to an exponential splitting scheme with more than two operators. We introduce the underlying split
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::748933840475d27cc7bb15a976ad1d06
Autor:
Geiser, Jürgen, Tanoğlu, Gamze
In this paper, we contribute higher order operator-splitting method improved by Zassenhaus product. We apply the contribution to classical and iterative splitting methods. The underlying analysis to obtain higher order operator-splitting methods is p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c6b4b4e8fdf8041bc6245ce878f67cf
http://edoc.hu-berlin.de/18452/3462
http://edoc.hu-berlin.de/18452/3462