Zobrazeno 1 - 10
of 263
pro vyhledávání: '"italian domination number"'
Consider a finite simple digraph $D$ with vertex set $V(D)$. An Italian dominating function (IDF) on $D$ is a function $f:V(D)\rightarrow\{0,1,2\}$ satisfying every vertex $u$ with $f(u)=0$ has an in-neighbor $v$ with $f(v)=2$ or two in-neighbors $w$
Externí odkaz:
http://arxiv.org/abs/2406.17368
Autor:
Liyang Wei1 yang7152022@163.com, Feng Li2 li2006369@126.com
Publikováno v:
IAENG International Journal of Applied Mathematics. Apr2024, Vol. 54 Issue 4, p791-796. 6p.
Autor:
Sheikholeslami, Seyed Mahmoud1 s.m.sheikholeslami@azaruniv.ac.ir, Volkmann, Lutz2 volkm@math2.rwth-aachen.de
Publikováno v:
Computer Science Journal of Moldova. 2024, Vol. 32 Issue 1, p19-37. 19p.
Publikováno v:
Computer Science Journal of Moldova, Vol 32, Iss 1(94), Pp 19-37 (2024)
If $G$ is a graph with vertex set $V(G)$, then let $N[u]$ be the closed neighborhood of the vertex $u\in V(G)$. A total double Italian dominating function (TDIDF) on a graph $G$ is a function $f:V(G)\rightarrow\{0,1,2,3\}$ satisfying (i) $f(N[u])\ge
Externí odkaz:
https://doaj.org/article/b66f4d35404d4497bd5f8549907eac66
Publikováno v:
AIMS Mathematics, Vol 8, Iss 5, Pp 10654-10664 (2023)
Let $ f:V(G)\rightarrow \{0, 1, 2\} $ be a function defined from a connected graph $ G $. Let $ W_i = \{x\in V(G): f(x) = i\} $ for every $ i\in \{0, 1, 2\} $. The function $ f $ is called a total Italian dominating function on $ G $ if $ \sum_{v\in
Externí odkaz:
https://doaj.org/article/1658ac6328f44e37bfec8d951caf6737
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Varghese, Jismy, S, Aparna Lakshmanan
An Italian dominating function (IDF), of a graph G is a function $ f: V(G) \rightarrow \{0,1,2\} $ satisfying the condition that for every $ v\in V(G) $ with $ f(v) = 0, \sum_{ u\in N(v)} f(u) \geq 2. $ The weight of an IDF on $G$ is the sum $ f(V)=
Externí odkaz:
http://arxiv.org/abs/2009.09989
Autor:
Volkmann, Lutz1 volkm@math2.rwth-aachen.de
Publikováno v:
Opuscula Mathematica. 2021, Vol. 41 Issue 2, p259-268. 10p.
Autor:
AZVIN, FARZANEH1, RAD, NADER JAFARI1 n.jafarirad@gmail.com
Publikováno v:
Discussiones Mathematicae: Graph Theory. 2022, Vol. 42 Issue 4, p1129-1137. 9p.
Autor:
Volkmann, Lutz1 volkm@math2.rwth-aachen.de
Publikováno v:
Communications in Combinatorics & Optimization. 2023, Vol. 8 Issue 1, p183-191. 9p.