Zobrazeno 1 - 10
of 102
pro vyhledávání: '"irregular labeling"'
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Pp 1-16 (2024)
Let [Formula: see text] be a connected plane graph. Let [Formula: see text] be a k-labeling where [Formula: see text] and [Formula: see text]. The weight of a face f under ρ is defined as [Formula: see text]. Then ρ is called a face irregular label
Externí odkaz:
https://doaj.org/article/ad694bf93a704ea38ef9f3eeba9cba43
Publikováno v:
Discrete Mathematics Letters, Vol 13, Pp 111-116 (2024)
Externí odkaz:
https://doaj.org/article/c36133b523484a4fb70b12ea139da5fb
Publikováno v:
Baghdad Science Journal, Vol 20, Iss 6(Suppl.) (2023)
Consider a simple graph on vertices and edges together with a total labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say defined by for all where Also, the value is said to be the edge weight of
Externí odkaz:
https://doaj.org/article/c01185cd80b345f8926d656032dd049d
Publikováno v:
AIMS Mathematics, Vol 8, Iss 10, Pp 25249-25261 (2023)
Consider a simple graph $ G = (V, E) $ of size $ m $ with the vertex set $ V $ and the edge set $ E $. A modular edge-irregular total $ k $-labeling of a graph $ G $ is a labeling scheme for the vertices and edges with the labels $ 1, 2, \dots, k $ t
Externí odkaz:
https://doaj.org/article/ba2b434340ae47bb84da6ac65625e153
Publikováno v:
Science and Technology Indonesia, Vol 8, Iss 3, Pp 479-485 (2023)
Let H= (T,S), be a finite simple graph, T(H)= T and S(H)= S, respectively, are the sets of vertices and edges on H. Let σ:T∪S→1,2,· · · ,k, be a total k-labeling on H and wσ(x), be a weight of x∈T while using σ labeling, which is evaluate
Externí odkaz:
https://doaj.org/article/0bcd1fefc371457281e09e8a8a48dfe3
Publikováno v:
AIMS Mathematics, Vol 8, Iss 1, Pp 1475-1487 (2023)
For a simple graph G=(V,E) with the vertex set V(G) and the edge set E(G), a vertex labeling φ:V(G)→{1,2,…,k} is called a k-labeling. The weight of an edge under the vertex labeling φ is the sum of the labels of its end vertices and the modular
Externí odkaz:
https://doaj.org/article/1dc8fc2fe9894ca99c9f1abda0905b4e
Publikováno v:
Baghdad Science Journal, Vol 20, Iss 1(SI) (2023)
Let G be a graph with p vertices and q edges and be an injective function, where k is a positive integer. If the induced edge labeling defined by for each is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A
Externí odkaz:
https://doaj.org/article/73ae506987724c4dbaf85361e970969c
Autor:
Putu Kartika Dewi
Publikováno v:
InPrime, Vol 4, Iss 2, Pp 160-169 (2022)
Let G(V, E) be a graph with order n with no component of order 2. An edge k-labeling α: E(G) →{1,2,…,k} is called a modular irregular k-labeling of graph G if the corresponding modular weight function wt_ α:V(G) → Z_n defined by wt_ α(x) =Ʃ
Externí odkaz:
https://doaj.org/article/4dafbaa1a82a45ef9cce009d34dcb73c
Publikováno v:
Kubik, Vol 7, Iss 1, Pp 31-37 (2022)
Let be a graph and k be a positive integer. A vertex k-labeling is called an edge irregular labeling if there are no two edges with the same weight, where the weight of an edge uv is . The edge irregularity strength of G, denoted by es(G), is the min
Externí odkaz:
https://doaj.org/article/3b9defa2089f40e787bd77478d49258f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.