Zobrazeno 1 - 10
of 220
pro vyhledávání: '"intrinsically knotted"'
We classify all the maximal linklessly embeddable graphs of order 12 and show that their complements are all intrinsically knotted. We derive results about the connected domination numbers of a graph and its complement. We provide an answer to an ope
Externí odkaz:
http://arxiv.org/abs/2407.09476
A graph is intrinsically knotted if every embedding contains a nontrivially knotted cycle. It is known that intrinsically knotted graphs have at least 21 edges and that there are exactly 14 intrinsically knotted graphs with 21 edges, in which the Hea
Externí odkaz:
http://arxiv.org/abs/2205.06199
Publikováno v:
Algebr. Geom. Topol. 24 (2024) 1203-1223
It has been an open question whether the deletion or contraction of an edge in an intrinsically knotted graph always yields an intrinsically linked graph. We present a new intrinsically knotted graph that shows the answer to both questions is no.
Externí odkaz:
http://arxiv.org/abs/2111.08859
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Naimi, Ramin
We give a brief survey of some known results on intrinsically linked or knotted graphs.
Comment: 8 pages, 3 figures
Comment: 8 pages, 3 figures
Externí odkaz:
http://arxiv.org/abs/2006.07342
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A graph is called intrinsically knotted if every embedding of the graph contains a knotted cycle. Johnson, Kidwell and Michael, and, independently, Mattman showed that intrinsically knotted graphs have at least 21 edges. Recently Lee, Kim, Lee and Oh
Externí odkaz:
http://arxiv.org/abs/1708.03925
Autor:
Fleming, Thomas, Foisy, Joel
We consider intrinsic linking and knotting in the context of directed graphs. We construct an example of a directed graph that contains a consistently oriented knotted cycle in every embedding. We also construct examples of intrinsically 3-linked and
Externí odkaz:
http://arxiv.org/abs/1702.06233
A graph is intrinsically knotted if every embedding contains a knotted cycle. It is known that intrinsically knotted graphs have at least 21 edges and that the KS graphs, $K_7$ and the 13 graphs obtained from $K_7$ by $\nabla Y$ moves, are the only m
Externí odkaz:
http://arxiv.org/abs/1411.1837
A graph is called intrinsically knotted if every embedding of the graph contains a knotted cycle. Johnson, Kidwell and Michael showed that intrinsically knotted graphs have at least 21 edges. Recently Lee, Kim, Lee and Oh, and, independently, Barsott
Externí odkaz:
http://arxiv.org/abs/1407.3460