Zobrazeno 1 - 10
of 714
pro vyhledávání: '"infinitely many solutions"'
Autor:
Giovany Figueiredo, Abdolrahman Razani
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 33, Pp 1-17 (2024)
The problem deals with the anisotropic $p(x)$-Laplacian operator where $p_i$ are Lipschitz continuous functions $2\leq p_i(x)
Externí odkaz:
https://doaj.org/article/2f4d3439b0d641de827aeb89c0e7eb98
Autor:
Dengfeng Lu, Shuwei Dai
Publikováno v:
AIMS Mathematics, Vol 9, Iss 7, Pp 18897-18909 (2024)
In this paper, we study the following biharmonic elliptic equation in $ \mathbb{R}^{N} $: $ \Delta^{2}\psi-\Delta \psi+P(x)\psi = g(x, \psi), \ \ x\in\mathbb{R}^{N}, $ where $ g $ and $ P $ are periodic in $ x_{1}, \cdots, x_{N} $, $ g(x, \psi)
Externí odkaz:
https://doaj.org/article/ff116e182ba74270b608b75fbec8e03c
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 2, Pp 303-334 (2024)
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u) inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad
Externí odkaz:
https://doaj.org/article/45c1dc70ce1b4a2b9fad14a6bea3f000
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-23 (2024)
Abstract We investigate a generalized poly-Laplacian system with a parameter on weighted finite graphs, a generalized poly-Laplacian system with a parameter and Dirichlet boundary value on weighted locally finite graphs, and a ( p , q ) $(p,q)$ -Lapl
Externí odkaz:
https://doaj.org/article/609a5962c1b3429fbc5c36c5a8b6d5a0
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 37-48 (2024)
In this article, we consider the following elliptic system of Hamiltonian-type on a bounded domain:−Δu=K1(∣y∣)∣v∣p−1v,inB1(0),−Δv=K2(∣y∣)∣u∣q−1u,inB1(0),u=v=0on∂B1(0),\left\{\begin{array}{ll}-\Delta u={K}_{1}\left(| y| ){|
Externí odkaz:
https://doaj.org/article/cd02fd32888b413c8c183298793b3cc0
Autor:
Zhou Shan
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 347-375 (2024)
In this article, we investigate the following Schrödinger equation: −Δu−μ∣x∣2u=g(u)inRN,-\Delta u-\frac{\mu }{{| x| }^{2}}u=g\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N}, where N≥3N\ge 3, μ∣x∣2\frac{\mu }{{| x| }^{
Externí odkaz:
https://doaj.org/article/8a6b9115b0684f83b7677fb2faa73a85
Publikováno v:
Alexandria Engineering Journal, Vol 91, Iss , Pp 503-509 (2024)
In this paper, by using critical point theory, we study the infinitely many solutions of partial discrete Kirchhoff type problems. Moreover, we acquire some sufficient conditions for the existence of positive solutions to the boundary value problems
Externí odkaz:
https://doaj.org/article/c7a26829909f40c1b1c793b47eda1cbd
Publikováno v:
Fractal and Fractional, Vol 8, Iss 7, p 380 (2024)
In the present paper, we investigate a fractional magnetic system involving critical concave–convex nonlinearities with Laplace operators. Specifically, (−Δ)Asu1=λ1|u1|q−2u1 + 2α1α1+β1|u1|α1−2u1|u2|β1 in Ω, (−Δ)Asu2=λ2|u2|q−2u2+
Externí odkaz:
https://doaj.org/article/faf796e97a6f467c965f8fd52d691816
Publikováno v:
Fractal and Fractional, Vol 8, Iss 6, p 305 (2024)
This paper considers a nonlinear impulsive fractional boundary value problem, which involves a ψ-Caputo-type fractional derivative and integral. Combining critical point theory and fractional calculus properties, such as the semigroup laws, and rela
Externí odkaz:
https://doaj.org/article/009f00cd72934ce585952d7e2e218801
Publikováno v:
Electronic Research Archive, Vol 31, Iss 1, Pp 386-400 (2023)
The existence of nontrivial solutions of the double phase problem with nonlinear boundary value condition is an important quasilinear problem: we use variational techniques and sum decomposition of a space $ W_0^{1, \xi}(\Omega) $ to prove the existe
Externí odkaz:
https://doaj.org/article/95f49d8f4cd242dbadab9fc1f809edc0