Zobrazeno 1 - 10
of 10
pro vyhledávání: '"increasing chain of spaces"'
Publikováno v:
Topology and its Applications. 160(1):137-142
A common generalization for two of the main streams of cardinality inequalities is developed; each stream derives from the famous inequality established by A.V. Arhangel'ski\u{\i} in 1969 for Hausdorff spaces. At the end of one stream is the recent i
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cammaroto, Filippo1 camfil@unime.it, Catalioto, Andrei1 acatalioto@unime.it, Porter, Jack2 porter@math.ku.edu
Publikováno v:
Topology & Its Applications. Sep2013, Vol. 160 Issue 14, p1862-1869. 8p.
A common generalization for two of the main streams of cardinality inequalities is developed; each stream derives from the famous inequality established by A.V. Arhangel'ski\u{\i} in 1969 for Hausdorff spaces. At the end of one stream is the recent i
Externí odkaz:
http://arxiv.org/abs/1206.6779
Autor:
Bella, Angelo
Publikováno v:
QM - Quaestiones Mathematicae; Sep2014, Vol. 37 Issue 3, p303-307, 5p
Autor:
Schwartz, J. T.
Publikováno v:
Communications on Pure & Applied Mathematics; May1966, Vol. 19 Issue 2, p139-143, 5p
Recently, in Cammaroto et al. (2013) [4] we obtained a generalization of the famous inequality established by A.V. Arhangelʼskiĭ in 1969 for Hausdoff spaces. In this paper, following this line of research, we present a common variation of this ineq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad2fcb743074ac2b6b10c7fbdc4774b4
http://hdl.handle.net/11570/2640570
http://hdl.handle.net/11570/2640570
Autor:
A. G. Khovanskii
The ideology of the theory of fewnomials is the following: real varieties defined by “simple,” not cumbersome, systems of equations should have a “simple” topology. One of the results of the theory is a real transcendental analogue of the Bez
Autor:
Gel′fand, I. M., Vilenkin, N. Ya
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the wor
Autor:
I. M. Gel'fand, N. Ya. Vilenkin
Generalized Functions, Volume 4: Applications of Harmonic Analysis is devoted to two general topics—developments in the theory of linear topological spaces and construction of harmonic analysis in n-dimensional Euclidean and infinite-dimensional sp