Zobrazeno 1 - 10
of 5 420
pro vyhledávání: '"human motion tracking"'
Autor:
Dai, Peng, Zhang, Yang, Liu, Tao, Fan, Zhen, Du, Tianyuan, Su, Zhuo, Zheng, Xiaozheng, Li, Zeming
It is especially challenging to achieve real-time human motion tracking on a standalone VR Head-Mounted Display (HMD) such as Meta Quest and PICO. In this paper, we propose HMD-Poser, the first unified approach to recover full-body motions using scal
Externí odkaz:
http://arxiv.org/abs/2403.03561
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Robust, fast, and accurate human state - 6D pose and posture - estimation remains a challenging problem. For real-world applications, the ability to estimate the human state in real-time is highly desirable. In this paper, we present BodySLAM++, a fa
Externí odkaz:
http://arxiv.org/abs/2309.01236
This document introduces the bridge between the leading inertial motion-capture systems for 3D human tracking and the most used robotics software framework. 3D kinematic data provided by Xsens are translated into ROS messages to make them usable by r
Externí odkaz:
http://arxiv.org/abs/2306.17738
Publikováno v:
In Journal of Engineering Research October 2024
Publikováno v:
SIGGRAPH Asia 2022 Conference Papers, December 6 to 9, 2022, Daegu, Republic of Korea
Real-time tracking of human body motion is crucial for interactive and immersive experiences in AR/VR. However, very limited sensor data about the body is available from standalone wearable devices such as HMDs (Head Mounted Devices) or AR glasses. I
Externí odkaz:
http://arxiv.org/abs/2209.09391
Estimating human motion from video is an active research area due to its many potential applications. Most state-of-the-art methods predict human shape and posture estimates for individual images and do not leverage the temporal information available
Externí odkaz:
http://arxiv.org/abs/2205.02301
Autor:
Yi, Xinyu, Zhou, Yuxiao, Habermann, Marc, Shimada, Soshi, Golyanik, Vladislav, Theobalt, Christian, Xu, Feng
Motion capture from sparse inertial sensors has shown great potential compared to image-based approaches since occlusions do not lead to a reduced tracking quality and the recording space is not restricted to be within the viewing frustum of the came
Externí odkaz:
http://arxiv.org/abs/2203.08528
Publikováno v:
Neural Computing & Applications. Aug2022, Vol. 34 Issue 15, p12439-12451. 13p.
Autor:
Boonsongsrikul, Anuparp1 (AUTHOR) anuparp@eng.buu.ac.th, Eamsaard, Jirapon1 (AUTHOR)
Publikováno v:
Sensors (14248220). Jan2023, Vol. 23 Issue 2, p897. 33p.