Zobrazeno 1 - 10
of 150
pro vyhledávání: '"histopathology image analysis"'
Publikováno v:
Human-Centric Intelligent Systems, Vol 4, Iss 3, Pp 417-436 (2024)
Abstract As the rise in cancer cases, there is an increasing demand to develop accurate and rapid diagnostic tools for early intervention. Pathologists are looking to augment manual analysis with computer-based evaluation to develop more efficient ca
Externí odkaz:
https://doaj.org/article/a38357d3ddb9431a8dd8eaa0ace7da4a
Autor:
Gang Xu, Shuhao Wang, Lingyu Zhao, Xiao Chen, Tongwei Wang, Lang Wang, Zhenwei Luo, Dahan Wang, Zewen Zhang, Aijun Liu, Wei Ba, Zhigang Song, Huaiyin Shi, Dingrong Zhong, Jianpeng Ma
Publikováno v:
Advanced Intelligent Systems, Vol 6, Iss 8, Pp n/a-n/a (2024)
Histopathology image analysis plays a crucial role in cancer diagnosis. However, training a clinically applicable segmentation algorithm requires pathologists to engage in labor‐intensive labeling. In contrast, weakly supervised learning methods, w
Externí odkaz:
https://doaj.org/article/61afbc3da5814148bcb2298cac4d420b
Publikováno v:
BMC Medical Imaging, Vol 24, Iss 1, Pp 1-18 (2024)
Abstract Background Convolutional neural network-based image processing research is actively being conducted for pathology image analysis. As a convolutional neural network model requires a large amount of image data for training, active learning (AL
Externí odkaz:
https://doaj.org/article/3d6ed6f9465845ff8438ece192681dde
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Access, Vol 10, Pp 42739-42749 (2022)
Nuclei detection is a fundamental task for numerous downstream analysis of histopathology images. Usually, it requires a large number of labeled images for fully supervised nuclei detection to achieve optimal performance. However, the process of coll
Externí odkaz:
https://doaj.org/article/7f3887fc63a14639b6e6c7c01781beda
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mai Tharwat, Nehal A. Sakr, Shaker El-Sappagh, Hassan Soliman, Kyung-Sup Kwak, Mohammed Elmogy
Publikováno v:
Sensors, Vol 22, Iss 23, p 9250 (2022)
The treatment and diagnosis of colon cancer are considered to be social and economic challenges due to the high mortality rates. Every year, around the world, almost half a million people contract cancer, including colon cancer. Determining the grade
Externí odkaz:
https://doaj.org/article/d5f92df3414d4bc7a29e4763ed85efa8
Publikováno v:
Diagnostics, Vol 12, Iss 11, p 2794 (2022)
Given the recent success of artificial intelligence (AI) in computer vision applications, many pathologists anticipate that AI will be able to assist them in a variety of digital pathology tasks. Simultaneously, tremendous advancements in deep learni
Externí odkaz:
https://doaj.org/article/7d9107b6dad74a519e5ff231f50c50dc
Autor:
Kyubum Lee, John H. Lockhart, Mengyu Xie, Ritu Chaudhary, Robbert J. C. Slebos, Elsa R. Flores, Christine H. Chung, Aik Choon Tan
Publikováno v:
Frontiers in Artificial Intelligence, Vol 4 (2021)
The tumor immune microenvironment (TIME) encompasses many heterogeneous cell types that engage in extensive crosstalk among the cancer, immune, and stromal components. The spatial organization of these different cell types in TIME could be used as bi
Externí odkaz:
https://doaj.org/article/6fcc33d2629245b6b7c569f8390d7be1