Zobrazeno 1 - 10
of 1 283
pro vyhledávání: '"hill operator"'
Publikováno v:
International Journal of Quantum InformationVol. 20, No. 07, 2250023 (2022)
We employ the Margenau-Hill (MH) correspondence rule for associating classical functions with quantum operators to construct quasi-probability mass functions. Using this we obtain the fuzzy one parameter quasi measurement operator (QMO) characterizin
Externí odkaz:
http://arxiv.org/abs/2111.13934
Autor:
Luo, Xu-Dan
The Hill operator admits a band gap structure. As a special case, like the Mathieu operator, one has only open gaps, however, the instability intervals of the Whittaker-Hill operator may be open or closed. In 2007, P. Djakov and B. Mityagin gave the
Externí odkaz:
http://arxiv.org/abs/2007.09575
Autor:
Veliev, O. A.
In this paper we investigate the non-self-adjoint operator H generated in all real line by the Mathieu-Hill equation with a complex-valued potential. We find a necessary and sufficient conditions on the potential for which H has no spectral singulari
Externí odkaz:
http://arxiv.org/abs/1906.04912
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kirac, Alp Arslan
Let $l_{n}$ be the length of the $n$-th instability interval of the Hill operator $Ly=-y^{\prime\prime}+q(x)y$. We obtain that if $l_{n}=o(n^{-2})$ then $c_{n}=o(n^{-2})$, where $c_{n}$ are the Fourier coefficients of $q$. Using this inverse result,
Externí odkaz:
http://arxiv.org/abs/1504.06547
Autor:
Baskakov, A. G.1 (AUTHOR) anatbaskakov@yandex.ru, Polyakov, D. M.2 (AUTHOR) DmitryPolyakow@mail.ru
Publikováno v:
Differential Equations. Jun2020, Vol. 56 Issue 6, p679-684. 6p.
Autor:
Veliev, O. A.
In this paper we investigate the spectral expansion for the one-dimensional Schrodinger operator with a periodic complex-valued potential. For this we consider in detail the spectral singularities and introduce new concepts as essential spectral sing
Externí odkaz:
http://arxiv.org/abs/1512.04473
Autor:
Veliev, O. A.
First we study the spectral singularity at infinity and investigate the connections of the spectral singularities and the spectrality of the Hill operator. Then we consider the spectral expansion when there is not the spectral singularity at infinity
Externí odkaz:
http://arxiv.org/abs/1401.6074
Autor:
Alp Arslan Kirac
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 41,, Pp 1-12 (2016)
Let $\ell_n$ be the length of the $n$-th instability interval of the Hill operator $Ly=-y''+q(x)y$. We prove that if $\ell_n=o(n^{-2})$ and the set $\{(n\pi)^2: n \text{ is even and } n>n_0\}$ is a subset of the periodic spectrum of the Hill operat
Externí odkaz:
https://doaj.org/article/4ed45289895a4c07973c4f85b9260d91
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.