Zobrazeno 1 - 10
of 40
pro vyhledávání: '"higher order boundary value problem"'
Publikováno v:
Arab Journal of Mathematical Sciences, 2022, Vol. 29, Issue 2, pp. 253-261.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/AJMS-10-2021-0274
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 29, Iss 2, Pp 253-261 (2023)
Purpose – A generalization of Ascoli–Arzelá theorem in Banach spaces is established. Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order. The authors’ results are obtained un
Externí odkaz:
https://doaj.org/article/28001e8b7a714d19b7d609f9cebac964
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-15 (2021)
Abstract This paper presents a numerical scheme based on Haar wavelet for the solutions of higher order linear and nonlinear boundary value problems. In nonlinear cases, quasilinearization has been applied to deal with nonlinearity. Then, through col
Externí odkaz:
https://doaj.org/article/942e36c449404dfb8eb7542eadf28ecd
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-15 (2021)
This paper presents a numerical scheme based on Haar wavelet for the solutions of higher order linear and nonlinear boundary value problems. In nonlinear cases, quasilinearization has been applied to deal with nonlinearity. Then, through collocation
Autor:
Kun Wang, Zhilin Yang
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 52,, Pp 1-15 (2012)
In this article we study the existence of positive solutions for the system of higher order boundary-value problems involving all derivatives of odd orders $$displaylines{ (-1)^mw^{(2m)} =f(t, w, w',-w''',dots, (-1)^{m-1}w^{(2m-1)}, z, z',-z''',dots,
Externí odkaz:
https://doaj.org/article/ef34d7666fcc439696f5b1dd21a1cc2d
Publikováno v:
Electronic Journal of Differential Equations, Vol 2007, Iss 45, Pp -10 (2007)
The authors consider the higher order boundary-value problem $$displaylines{ u^{(n)}(t)= q(t)f(u(t)), quad 0 leq t leq 1, cr u^{(i-1)}(0) = u^{(n-2)}(p) = u^{(n-1)}(1)=0, quad 1 leq i leq n-2, }$$ where $nge 4$ is an integer, and $pin(1/2,1)$ is a co
Externí odkaz:
https://doaj.org/article/b85d55a0188141c1bf6b8a2ca052bcef
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ravi P. Agarwal, Fu-Hsiang Wong
Publikováno v:
Journal of Computational and Applied Mathematics. 88:3-14
We shall provide conditions on non-positive function f ( t , u 1 ,…, u n −1 ) so that the boundary value problem has at least one positive solution. Then, we shall apply this result to establish several existence theorems which guarantee the mult