Zobrazeno 1 - 10
of 262
pro vyhledávání: '"higher order boundary value problem"'
Publikováno v:
Arab Journal of Mathematical Sciences, 2022, Vol. 29, Issue 2, pp. 253-261.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/AJMS-10-2021-0274
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 29, Iss 2, Pp 253-261 (2023)
Purpose – A generalization of Ascoli–Arzelá theorem in Banach spaces is established. Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order. The authors’ results are obtained un
Externí odkaz:
https://doaj.org/article/28001e8b7a714d19b7d609f9cebac964
Publikováno v:
Arab Journal of Mathematical Sciences; 2023, Vol. 29 Issue 2, p253-261, 9p
Autor:
M. Kouidri, A. Amara
Publikováno v:
Advances in Mathematics: Scientific Journal. 11:655-670
In this work, we prove the existence of solution for the following higher-order boundary value problem at resonance $\omega^{(n)}(t)=f(t,\omega(t),\ldots,\linebreak \omega^{(n-2)}(t))$ $n\geq 3,\, t\in (0,1),$ $ \omega(0)=\omega'(0)=\ldots =\omega^{(
Autor:
YASLAN, İSMAİL1 iyaslan@pau.edu.tr
Publikováno v:
Fixed Point Theory. 2016, Vol. 17 Issue 1, p201-214. 14p.
Publikováno v:
Electronic Journal of Differential Equations, Vol 2007, Iss 45, Pp -10 (2007)
The authors consider the higher order boundary-value problem $$displaylines{ u^{(n)}(t)= q(t)f(u(t)), quad 0 leq t leq 1, cr u^{(i-1)}(0) = u^{(n-2)}(p) = u^{(n-1)}(1)=0, quad 1 leq i leq n-2, }$$ where $nge 4$ is an integer, and $pin(1/2,1)$ is a co
Externí odkaz:
https://doaj.org/article/b85d55a0188141c1bf6b8a2ca052bcef
Autor:
Yang, Zhilin
Publikováno v:
In Computers and Mathematics with Applications 2007 54(2):220-228
Autor:
Graef, John R.1 John-Graef@utc.edu, Henderson, Johnny2 Johnny_Henderson@baylor.edu, Bo Yang3 byang@kennesaw.edu
Publikováno v:
Electronic Journal of Differential Equations. 2007, Vol. 2007, p1-10. 10p.
Publikováno v:
Arab Journal of Mathematical Sciences.
PurposeA generalization of Ascoli–Arzelá theorem in Banach spaces is established. Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order. The authors’ results are obtained under,