Zobrazeno 1 - 10
of 4 953
pro vyhledávání: '"high-order method"'
In this work we develop and analyze a Reynolds-semi-robust and pressure-robust Hybrid High-Order (HHO) discretization of the incompressible Navier--Stokes equations. Reynolds-semi-robustness refers to the fact that, under suitable regularity assumpti
Externí odkaz:
http://arxiv.org/abs/2409.07037
Autor:
Carstensen, Carsten, Tran, Ngoc Tien
The hybrid-high order (HHO) scheme has many successful applications including linear elasticity as the first step towards computational solid mechanics. The striking advantage is the simplicity among other higher-order nonconforming schemes and its g
Externí odkaz:
http://arxiv.org/abs/2404.02768
Publikováno v:
Numer. Math. 156 (2024), 813-851
The higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent work by Carstensen, Ern, and Puttkammer [Numer. Math. 149, 2021] require a parameter $C_{\mathrm{st},1}$ that is found $\textit{not}$ robust as the polynomial degree $
Externí odkaz:
http://arxiv.org/abs/2404.01228
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yemm, Liam
An enriched hybrid high-order method is designed for the Stokes equations of fluid flow and is fully applicable to generic curved meshes. Minimal regularity requirements of the enrichment spaces are given, and an abstract error analysis of the scheme
Externí odkaz:
http://arxiv.org/abs/2311.13243
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cicchino, Alexander, Nadarajah, Siva
Provable nonlinear stability bounds the discrete approximation and ensures that the discretization does not diverge. For high-order methods, discrete nonlinear stability and entropy stability, have been successfully implemented for discontinuous Gale
Externí odkaz:
http://arxiv.org/abs/2312.07725
Autor:
Mallik, Gouranga, Gudi, Thirupathi
In this article, we design and analyze a Hybrid High-Order (HHO) finite element approximation for a class of strongly nonlinear boundary value problems. We consider an HHO discretization for a suitable linearized problem and show its well-posedness u
Externí odkaz:
http://arxiv.org/abs/2309.13352
We consider the solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order (HHO) methods. The two resulting second-order elliptic problems can be decoupled via the introduction of a new unknown, corresponding to the bounda
Externí odkaz:
http://arxiv.org/abs/2308.10748