Zobrazeno 1 - 10
of 67
pro vyhledávání: '"heterocigosidad"'
Publikováno v:
Acta Agronómica, Vol 65, Iss 3, Pp 292-297 (2016)
The molecular markers have shown their great utility in the characterization of the domestic animals, hence, the objective of this work was to characterize, genetically, the Creole pig of Ecuador by means of microsatellites. Samples of hair of 15 ani
Externí odkaz:
https://doaj.org/article/3d8f2e5eb1054e87ab4a3c58bed33041
Autor:
Morales González, Elisabet
Tesis por compendio
[ES] Un objetivo fundamental en los programas de conservación es mantener la diversidad genética y la estrategia de gestión más eficiente para lograrlo es aplicar el método de Contribuciones Óptimas. Este método optimi
[ES] Un objetivo fundamental en los programas de conservación es mantener la diversidad genética y la estrategia de gestión más eficiente para lograrlo es aplicar el método de Contribuciones Óptimas. Este método optimi
Externí odkaz:
http://hdl.handle.net/10251/195231
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yacenia Morillo C., Ana Cruz Morillo C., Jaime Eduardo Muñoz F., William Ballesteros P., Alonso González
Publikováno v:
Agronomía Colombiana, Vol 32, Iss 3, Pp 315-325 (2014)
Random amplified microsatellite (RAMs) markers six were used to characterize 93 genotypes of cocoa in Tumaco (Colombia). Hundred twenty seven bands were generated. The number of polymorphic loci varied between 11 and 25 for the AG and TG primers, res
Externí odkaz:
https://doaj.org/article/cf007768ac0d44d5affce8f35eac970f
Publikováno v:
Revista de Biología Tropical, Vol 62, Iss 2, Pp 659-669 (2014)
A limited number of studies have focused on the population genetic structure of vampire bats (Desmodus rotundus) in America. This medium-sized bat is distributed in tropical areas of the continent with high prevalence in forested livestock areas. The
Externí odkaz:
https://doaj.org/article/0cb9525c4acd4df8a7565c65c3f58030
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Carlos Hugo Avendaño-Arrazate, Jorge Cadena-Iñiguez, María Lourdes Arévalo-Galarza, Victor Manuel Cisneros-Solano, Juan Francisco Aguirre-Medina, Esaú del Carmen Moreno-Pérez, Moises Cortés-Cruz, Carlos Roman Castillo-Martínez, Porfirio Ramírez-Vallejo
Publikováno v:
Pesquisa Agropecuária Brasileira, Vol 47, Iss 2, Pp 244-252 (2012)
El objetivo de este trabajo fue estimar el grado de variación genética dentro del complejo infraespecífico de Sechium mediante el uso de sistemas isoenzimáticos. Se analizaron 23 loci codificados por 12 sistemas isoenzimáticos, en geles de almid
Externí odkaz:
https://doaj.org/article/e1ff8eeec6a34da5a78d284502dfeb88
Autor:
Evans, Simon R., Sheldon, Ben C.
Publikováno v:
Conservation Biology, 2008 Aug 01. 22(4), 1016-1025.
Externí odkaz:
https://www.jstor.org/stable/20183483
Publikováno v:
Akematsu T, Fukuda Y, Garg J, Fillingham JS, Pearlman RE, Loidl J. 2017. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. eLife 6:e26176 DOI 10.7554/eLife.26176.
Alves CL, Repoles BM, Da Silva MS, Mendes IC, Marin PA, Machado CR, Aguiar PHN, Da Silva Santos S, Franco GR, Macedo AM, Pena SDJ, De Oliveira Andrade L, Guarneri AA, Tahara EB, Elias MC, Machado CR. 2018. The recombinase Rad51 plays a key role in events of genetic exchange in Trypanosoma cruzi. Scientific Reports 8(1):13335 DOI 10.1038/s41598-018-31541-z.
Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, Brunk BP, Cade S, Crouch K, Doherty R, Falke D, Fischer S, Gajria B, Harb OS, Heiges M, Hertz-Fowler C, Hu S, Iodice J, Kissinger JC, Lawrence C, Li W, Pinney DF, Pulman JA, Roos DS, Shanmugasundram A, Silva-Franco F, Steinbiss S, Stoeckert CJ Jr, Spruill D, Wang H, Warrenfeltz S, Zheng J. 2017. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Research 45(D1):D581–D591 DOI 10.1093/nar/gkw1105.
Avila AR, Dallagiovanna B, Yamada-Ogatta SF, Monteiro-Góes V, Fragoso SP, Krieger MA, Goldenberg S. 2003. Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genetics and Molecular Research 2(1):159–168.
Barisón MJ, Rapado LN, Merino EF, Furusho Pral EM, Mantilla BS, Marchese L, Nowicki C, Silber AM, Cassera MB. 2017. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in Trypanosoma cruzi epimastigotes. Journal of Biological Chemistry 292(21):8964–8977 DOI 10.1074/jbc.M117.778522.
Bayer-Santos E, Cunha-e-Silva NL, Yoshida N, Franco da Silveira J. 2013. Expression and cellular trafficking of GP82 and GP90 glycoproteins during Trypanosoma cruzi metacyclogenesis. Parasit Vectors 6:127 DOI 10.1186/1756-3305-6-127.
Belew AT, Junqueira C, Rodrigues-Luiz GF, Valente BM, Oliveira AER, Polidoro RB, Zuccherato LW, Bartholomeu DC, Schenkman S, Gazzinelli RT, Burleigh BA, El-Sayed NM, Teixeira SMR, Taylor M. 2017. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLOS Pathogens 13(12):e1006767 DOI 10.1371/journal.ppat.1006767.
Benjamin KR, Zhang C, Shokat KM, Herskowitz I. 2003. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes & Development 17:1524–1539 DOI 10.1101/gad.1101503.
Berná L, Chiribao ML, Greif G, Rodriguez M, Alvarez-Valin F, Robello C. 2017. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi. PeerJ 5(3):e3017 DOI 10.7717/peerj.3017.
Berry ASF, Salazar-Sanchez R, Castillo-Neyra R, Borrini-Mayori K, Chipana-Ramos C, Vargas-Maquera M, Ancca-Juarez J, Náquira-Velarde C, Levy MZ, Brisson D, Chagas Disease Working Group in Arequipa. 2019. Sexual reproduction in a natural Trypanosoma cruzi population. PLOS Neglected Tropical Diseases 13(5):e0007392 DOI 10.1371/journal.pntd.0007392.
Besteiro S, Brooks CF, Striepen B, Dubremetz JF. 2011. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii Tachyzoites. PLOS Pathogens 7(12):e1002416 DOI 10.1371/journal.ppat.1002416.
Carpenter ML, Assaf ZJ, Gourguechon S, Cande WZ. 2012. Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis. Journal of Cell Science 125(10):2523–2532 DOI 10.1242/jcs.103879.
Clayton C, Shapira M. 2007. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular and Biochemical Parasitology 156(2):93–101 DOI 10.1016/j.molbiopara.2007.07.007.
Contreras VT, Morel CM, Goldenberg S. 1985. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Molecular and Biochemical Parasitology 14(1):83–96 DOI 10.1016/0166-6851(85)90108-2.
Cruz L, Vivas A, Montilla M, Hernández C, Flórez C, Parra E, Ramírez JD. 2015. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. Infection, Genetics and Evolution 29:110–117 DOI 10.1016/j.meegid.2014.11.012.
Cruz-Saavedra L, Muñoz M, León C, Patarroyo MA, Arevalo G, Pavia P, Vallejo G, Carranza JC, Ramírez JD. 2017. Purification of Trypanosoma cruzi metacyclic trypomastigotes by ion exchange chromatography in sepharose-DEAE, a novel methodology for host-pathogen interaction studies. Journal of Microbiological Methods 142:27–32 DOI 10.1016/j.mimet.2017.08.021.
Cucunubá ZM, Okuwoga O, Basáñez MG, Nouvellet P. 2016. Increased mortality attributed to Chagas disease: a systematic review and meta-analysis. Parasites & Vectors 9(1):42 DOI 10.1186/s13071-016-1315-x.
Dalla Venezia N, Vincent A, Marcel V, Catez F, Diaz JJ. 2019. Emerging role of eukaryote ribosomes in translational control. International Journal of Molecular Sciences 20(5):1226 DOI 10.3390/ijms20051226.
Datta SP, Jana K, Mondal A, Ganguly S, Sarkar S. 2018. Multiple paralogues of a-SNAP in Giardia lamblia exhibit independent subcellular localization and redistribution during encystation and stress. Parasites & Vectors 11(1):539 DOI 10.1186/s13071-018-3112-1.
Dos Santos CMB, Ludwig A, Kessler RL, De Cássia Pontello Rampazzo R, Inoue AH, Krieger MA, Pavoni DP, Probst CM. 2018. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Memórias do Instituto Oswaldo Cruz 113(5):921 DOI 10.1590/0074-02760170404
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, Da Silveira JF, De Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B. 2005. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309(5733):409–415 DOI 10.1126/science.1112631.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Alves CL, Repoles BM, Da Silva MS, Mendes IC, Marin PA, Machado CR, Aguiar PHN, Da Silva Santos S, Franco GR, Macedo AM, Pena SDJ, De Oliveira Andrade L, Guarneri AA, Tahara EB, Elias MC, Machado CR. 2018. The recombinase Rad51 plays a key role in events of genetic exchange in Trypanosoma cruzi. Scientific Reports 8(1):13335 DOI 10.1038/s41598-018-31541-z.
Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, Brunk BP, Cade S, Crouch K, Doherty R, Falke D, Fischer S, Gajria B, Harb OS, Heiges M, Hertz-Fowler C, Hu S, Iodice J, Kissinger JC, Lawrence C, Li W, Pinney DF, Pulman JA, Roos DS, Shanmugasundram A, Silva-Franco F, Steinbiss S, Stoeckert CJ Jr, Spruill D, Wang H, Warrenfeltz S, Zheng J. 2017. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Research 45(D1):D581–D591 DOI 10.1093/nar/gkw1105.
Avila AR, Dallagiovanna B, Yamada-Ogatta SF, Monteiro-Góes V, Fragoso SP, Krieger MA, Goldenberg S. 2003. Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genetics and Molecular Research 2(1):159–168.
Barisón MJ, Rapado LN, Merino EF, Furusho Pral EM, Mantilla BS, Marchese L, Nowicki C, Silber AM, Cassera MB. 2017. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in Trypanosoma cruzi epimastigotes. Journal of Biological Chemistry 292(21):8964–8977 DOI 10.1074/jbc.M117.778522.
Bayer-Santos E, Cunha-e-Silva NL, Yoshida N, Franco da Silveira J. 2013. Expression and cellular trafficking of GP82 and GP90 glycoproteins during Trypanosoma cruzi metacyclogenesis. Parasit Vectors 6:127 DOI 10.1186/1756-3305-6-127.
Belew AT, Junqueira C, Rodrigues-Luiz GF, Valente BM, Oliveira AER, Polidoro RB, Zuccherato LW, Bartholomeu DC, Schenkman S, Gazzinelli RT, Burleigh BA, El-Sayed NM, Teixeira SMR, Taylor M. 2017. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLOS Pathogens 13(12):e1006767 DOI 10.1371/journal.ppat.1006767.
Benjamin KR, Zhang C, Shokat KM, Herskowitz I. 2003. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes & Development 17:1524–1539 DOI 10.1101/gad.1101503.
Berná L, Chiribao ML, Greif G, Rodriguez M, Alvarez-Valin F, Robello C. 2017. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi. PeerJ 5(3):e3017 DOI 10.7717/peerj.3017.
Berry ASF, Salazar-Sanchez R, Castillo-Neyra R, Borrini-Mayori K, Chipana-Ramos C, Vargas-Maquera M, Ancca-Juarez J, Náquira-Velarde C, Levy MZ, Brisson D, Chagas Disease Working Group in Arequipa. 2019. Sexual reproduction in a natural Trypanosoma cruzi population. PLOS Neglected Tropical Diseases 13(5):e0007392 DOI 10.1371/journal.pntd.0007392.
Besteiro S, Brooks CF, Striepen B, Dubremetz JF. 2011. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii Tachyzoites. PLOS Pathogens 7(12):e1002416 DOI 10.1371/journal.ppat.1002416.
Carpenter ML, Assaf ZJ, Gourguechon S, Cande WZ. 2012. Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis. Journal of Cell Science 125(10):2523–2532 DOI 10.1242/jcs.103879.
Clayton C, Shapira M. 2007. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular and Biochemical Parasitology 156(2):93–101 DOI 10.1016/j.molbiopara.2007.07.007.
Contreras VT, Morel CM, Goldenberg S. 1985. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Molecular and Biochemical Parasitology 14(1):83–96 DOI 10.1016/0166-6851(85)90108-2.
Cruz L, Vivas A, Montilla M, Hernández C, Flórez C, Parra E, Ramírez JD. 2015. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. Infection, Genetics and Evolution 29:110–117 DOI 10.1016/j.meegid.2014.11.012.
Cruz-Saavedra L, Muñoz M, León C, Patarroyo MA, Arevalo G, Pavia P, Vallejo G, Carranza JC, Ramírez JD. 2017. Purification of Trypanosoma cruzi metacyclic trypomastigotes by ion exchange chromatography in sepharose-DEAE, a novel methodology for host-pathogen interaction studies. Journal of Microbiological Methods 142:27–32 DOI 10.1016/j.mimet.2017.08.021.
Cucunubá ZM, Okuwoga O, Basáñez MG, Nouvellet P. 2016. Increased mortality attributed to Chagas disease: a systematic review and meta-analysis. Parasites & Vectors 9(1):42 DOI 10.1186/s13071-016-1315-x.
Dalla Venezia N, Vincent A, Marcel V, Catez F, Diaz JJ. 2019. Emerging role of eukaryote ribosomes in translational control. International Journal of Molecular Sciences 20(5):1226 DOI 10.3390/ijms20051226.
Datta SP, Jana K, Mondal A, Ganguly S, Sarkar S. 2018. Multiple paralogues of a-SNAP in Giardia lamblia exhibit independent subcellular localization and redistribution during encystation and stress. Parasites & Vectors 11(1):539 DOI 10.1186/s13071-018-3112-1.
Dos Santos CMB, Ludwig A, Kessler RL, De Cássia Pontello Rampazzo R, Inoue AH, Krieger MA, Pavoni DP, Probst CM. 2018. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Memórias do Instituto Oswaldo Cruz 113(5):921 DOI 10.1590/0074-02760170404
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, Da Silveira JF, De Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B. 2005. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309(5733):409–415 DOI 10.1126/science.1112631.
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
El parásito Trypanosoma cruzi es conocido como el agente etiológico de la enfermedad de Chagas, según reportes de la Organización Mundial de la Salud (OMS) se encuentra dentro de las 17 enfermedades tropicales desatendidas y es la tercera infecci
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e198271dec77c0d4095f712216ade428
https://repository.urosario.edu.co/handle/10336/33660
https://repository.urosario.edu.co/handle/10336/33660
Autor:
Federico Garrido, Teresa Rodríguez, Maria Antonia Garrido, Per Anderson, Francisco Perea, Natalia Aptsiauri, Francisco Ruiz-Cabello, Jose R. Vilchez
Publikováno v:
Cancers, Vol 13, Iss 5046, p 5046 (2021)
Cancers
Volume 13
Issue 20
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Cancers
Volume 13
Issue 20
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Total or partial loss of HLA class I antigens reduce the recognition of specific tumor peptides by cytotoxic T lymphocytes favoring cancer immune escape during natural tumor evolution. These alterations can be caused by genomic defects, such as loss
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::134eb3096a7c5d3d7eba2f873c67fd0b
https://hdl.handle.net/10668/4239
https://hdl.handle.net/10668/4239