Zobrazeno 1 - 10
of 254
pro vyhledávání: '"heavenly equations"'
Autor:
Stȩpień, Ł. T.
Some new classes of exact solutions (so-called functionally-invariant solutions) of the elliptic and hyperbolic complex Monge-Amp$\grave{e}$re equations and of the second heavenly equation, mixed heavenly equation, asymmetric heavenly equation, evolu
Externí odkaz:
http://arxiv.org/abs/1208.2905
Autor:
Dryuma, Valerii
Some solutions of the Heavenly equations and their generalizations are considered
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/gr-qc/0611001
Autor:
Garcia-Compean, Hugo
In this paper we survey some of the relations between Plebanski description of self-dual gravity through the heavenly equations and the physics (and mathematics) of N=2 Strings. In particular we focus on the correspondence between the infinite hierar
Externí odkaz:
http://arxiv.org/abs/hep-th/0405197
Publikováno v:
J.Phys. A37 (2004) 7527-7546
We extend our method of partner symmetries to the hyperbolic complex Monge-Amp\`ere equation and the second heavenly equation of Pleba\~nski. We show the existence of partner symmetries and derive the relations between them for both equations. For ce
Externí odkaz:
http://arxiv.org/abs/math-ph/0403020
We demonstrate that partner symmetries provide a lift of noninvariant solutions of three-dimensional Boyer-Finley equation to noninvariant solutions of four-dimensional hyperbolic complex Monge-Ampere equation. The lift is applied to noninvariant sol
Externí odkaz:
http://arxiv.org/abs/0704.3335
Publikováno v:
J.Phys. A38 (2005) 7773-7784
The $n\to\infty$ continuum limit of super-Toda models associated with the affine $sl(2n|2n)^{(1)}$ (super)algebra series produces $(2+1)$-dimensional integrable equations in the ${\bf S}^{1}\times {\bf R}^2$ spacetimes. The equations of motion of the
Externí odkaz:
http://arxiv.org/abs/hep-th/0504214
Autor:
Plebański, J. F., García-Compeán, H.
Publikováno v:
Acta Phys.Polon. B26 (1995) 3-18
\noindent It is find a non-linear partial differential equation which we show contains the first Heavenly equation of Self-dual gravity and generalize the second one. This differential equation we call "Weak Heavenly Equation" (${\cal WH}$-equation).
Externí odkaz:
http://arxiv.org/abs/hep-th/9405078
Autor:
Ł. T. Stȩpień
Publikováno v:
AIP Advances, Vol 10, Iss 6, Pp 065105-065105-16 (2020)
Some new classes of exact solutions (so-called functionally invariant solutions) of the elliptic and hyperbolic complex Monge–Ampère equations and of the second heavenly equation are found. Besides, non-invariance of the found classes of solutions
Externí odkaz:
https://doaj.org/article/767739abec60404587e1362aacea8603
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.