Zobrazeno 1 - 10
of 842
pro vyhledávání: '"hausdorff moment problem"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Zhang, Ruiming
In this work we apply Hausdorff moment problem to prove a necessary and sufficient condition for a complex sequence to be positive. Then we apply it to a subclass of genus $0$ entire functions $f(z)$ to obtain an infinite family of necessary and suff
Externí odkaz:
http://arxiv.org/abs/2303.09396
Publikováno v:
Enumerative Combinatorics and Applications, ECA 3:2 (2023) Article #S2R15, 10 pages
We investigate the combinatorial sequences $A(M, n)$ introduced by W. G. Brown (1964) and W. T. Tutte (1980) appearing in enumeration of convex polyhedra. Their formula is $$A(M, n) = \frac{2 (2M+3)!}{(M+2)! M!}\,\frac{(4n+2M+1)!}{n! (3n + 2M + 3)!}
Externí odkaz:
http://arxiv.org/abs/2209.06574
Autor:
Gerth, Daniel, Hofmann, Bernd
Publikováno v:
EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS 10(1), pp. 40--0, 2022
We address facts and open questions concerning the degree of ill-posedness of the composite Hausdorff moment problem aimed at the recovery of a function $x \in L^2(0,1)$ from elements of the infinite dimensional sequence space $\ell^2$ that character
Externí odkaz:
http://arxiv.org/abs/2206.04127
The Hausdorf moment problem (HMP) over the unit interval in an $L^2$-setting is a classical example of an ill-posed inverse problem. Since various applications can be rewritten in terms of the HMP, it has gathered significant attention in the literat
Externí odkaz:
http://arxiv.org/abs/2104.06029
A complete analytic solution for the time-optimal control problem for nonlinear control systems of the form $\dot x_1=u$, $\dot x_j=x_1^{j-1}$, $j=2,\ldots,n$, is obtained for arbitrary $n$. The main goal of the paper is to present the following surp
Externí odkaz:
http://arxiv.org/abs/2007.02398
The main goal of this paper is to achieve a parametrization of the solution set of the truncated matricial Hausdorff moment problem in the non-degenerate and degenerate situation. We treat the even and the odd cases simultaneously. Our approach is ba
Externí odkaz:
http://arxiv.org/abs/2005.03365
Publikováno v:
Enumerative Combinatorics and Applications, Vol 3, Iss 2, p Article #S2R15 (2023)
Externí odkaz:
https://doaj.org/article/0d69153f3b1a4696bfcdd04cae2df7ad
We consider the problem of identifying, from its first $m$ noisy moments, a probability distribution on $[0,1]$ of support $k<\infty$. This is equivalent to the problem of learning a distribution on $m$ observable binary random variables $X_1,X_2,\do
Externí odkaz:
http://arxiv.org/abs/2007.08101
Autor:
Sklyar, G.M.1,2 (AUTHOR), Ignatovich, S. Yu.3 (AUTHOR) ignatovich@ukr.net
Publikováno v:
ESAIM: Control, Optimisation & Calculus of Variations. 2022, Vol. 28, p1-26. 26p.