Zobrazeno 1 - 10
of 2 993
pro vyhledávání: '"hadamard inequality"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-15 (2024)
Abstract In this paper, we prove some new versions of the Hermite–Hadamard inequality for ( ϕ − h ) $({\phi}-h)$ -integrals. For this aim, we use the tangent and secant lines at the same special points. Moreover, we investigate the relations bet
Externí odkaz:
https://doaj.org/article/6870888f9b374292bdb4636275689975
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-24 (2024)
Abstract In this manuscript, we demonstrate a graphical comparison analysis of the classical, quantum, and symmetric quantum derivatives for any continuous function, evaluated at z = 1 $\mathfrak{z}=1$ and q = 0.5 $\mathtt{q}=0.5$ . We introduce the
Externí odkaz:
https://doaj.org/article/4336bd341f5e474a9c4a3c0b9e797139
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-28 (2024)
Abstract In the present work we establish for the first time a class of ( P , m ) $(P,\mathrm{m})$ -superquadratic functions and look into its features. Using them, we come up with the Jensen and Hermite–Hadamard inequalities, as well as the fracti
Externí odkaz:
https://doaj.org/article/4fba27a38f2b43ee9b08a19b4035dc95
Autor:
Jleli Mohamed
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 369-390 (2024)
Fejér’s integral inequality is a weighted version of the Hermite-Hadamard inequality that holds for the class of convex functions. To derive his inequality, Fejér [Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24 (1906), 3
Externí odkaz:
https://doaj.org/article/64d4a4906e044ed997d755a2b099791b
Autor:
Attazar Bakht, Matloob Anwar
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 28130-28149 (2024)
Integral inequalities involving exponential convexity are significant in both theoretical and applied mathematics. In this paper, we establish a new Hermite-Hadamard type inequality for the class of exponentially convex functions by using the concept
Externí odkaz:
https://doaj.org/article/e3438cda9bca41c7a2862b8a4d4e3bbb
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 303-311 (2024)
In this article, we study some Hermite-Hadamard-type inequalities for strongly hh-convex functions on co-ordinates in Rn{{\mathbb{R}}}^{n}, which extend some known results. Some mappings connected with these inequalities and related applications are
Externí odkaz:
https://doaj.org/article/da6d7b05d4514e5ba59aae787277ce3d
Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity
Publikováno v:
AIMS Mathematics, Vol 9, Iss 9, Pp 23924-23944 (2024)
This paper focuses on introducing and investigating the class of generalized $ n $-fractional polynomial $ s $-type convex functions within the framework of fractional calculus. Relationships between the novel class of functions and other kinds of co
Externí odkaz:
https://doaj.org/article/e7f7d8843191400eacbcf0d55db62567
Autor:
Latif Muhammad Amer
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 82-215 (2024)
In this study, some mappings related to the Fejér-type inequalities for GAGA-convex functions are defined over the interval [0,1]{[}0,1]. Some Fejér-type inequalities for GAGA-convex functions are proved using these mappings. Properties of these ma
Externí odkaz:
https://doaj.org/article/87e403b5a48d403a86e537ede871835e
Autor:
Jleli Mohamed, Samet Bessem
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 176-186 (2024)
For a given sequence a=(a1,…,an)∈Rna=\left({a}_{1},\ldots ,{a}_{n})\in {{\mathbb{R}}}^{n}, our aim is to obtain an estimate of En≔a1+an2−1n∑i=1nai{E}_{n}:= \left|\hspace{-0.33em},\frac{{a}_{1}+{a}_{n}}{2}-\frac{1}{n}{\sum }_{i=1}^{n}{a}_{i}
Externí odkaz:
https://doaj.org/article/bb98c3be0c4646529df3103eb0849984