Zobrazeno 1 - 3
of 3
pro vyhledávání: '"groups acting on manifolds"'
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2020, 20 (6), pp.3183-3203. ⟨10.2140/agt.2020.20.3183⟩
Algebr. Geom. Topol. 20, no. 6 (2020), 3183-3203
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2020, 20 (6), pp.3183-3203. ⟨10.2140/agt.2020.20.3183⟩
Algebr. Geom. Topol. 20, no. 6 (2020), 3183-3203
Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ed68b79bc6e9431fd05297082b29b31
http://arxiv.org/abs/1910.04620
http://arxiv.org/abs/1910.04620
Autor:
Jacques Helmstetter
Publikováno v:
Journal of Algebra. 328:461-483
In every Clifford algebra Cℓ(V,q) there is a Lipschitz monoid Lip(V,q) which in general is the multiplicative monoid (or semi-group) generated by V in Cℓ(V,q); its even and odd components are closed irreducible algebraic submanifolds. When dim(V)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.