Zobrazeno 1 - 10
of 2 029
pro vyhledávání: '"green kernel"'
Autor:
Jiao, Xiaopei, Xiong, Fansheng
Ever since deep learning was introduced in the calculation of partial differential equation (PDE), there has been a lot of interests on real time response of system where the kernel function plays an important role. As a popular tool in recent years,
Externí odkaz:
http://arxiv.org/abs/2407.20155
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Stochastic Processes and their Applications January 2024 167
A diffusion spider is a strong Markov process with continuous paths taking values on a graph with one vertex and a finite number of edges (of infinite length). An example is Walsh's Brownian spider where the process on each edge behaves as Brownian m
Externí odkaz:
http://arxiv.org/abs/2209.11491
Autor:
Zakariyae Mouhcine
Publikováno v:
Electronic Journal of Differential Equations, Vol 2022, Iss 39,, Pp 1-11 (2022)
Externí odkaz:
https://doaj.org/article/8785ea07f36d4ef888a4db7754eb9c1f
Let $\Omega \subset \mathbb{R}^N$ ($N \geq 3$) be a $C^2$ bounded domain and $K \subset \Omega$ be a compact, $C^2$ submanifold in $\mathbb{R}^N$ without boundary, of dimension $k$ with $0\leq k < N-2$. We consider the Schr\"odinger operator $L_\mu =
Externí odkaz:
http://arxiv.org/abs/2002.10754
Publikováno v:
In Applied Mathematics Letters November 2022 133
Autor:
MOUHCINE, ZAKARIYAE1 zakariyaemouhcine@gmail.com
Publikováno v:
Electronic Journal of Differential Equations. 2022, p1-11. 11p.
Publikováno v:
In Marine Structures November 2020 74
Publikováno v:
Electron. Commun. Probab., Volume 25 (2020), paper no. 58, 14 pp
We consider random walks among random conductances on $\mathbb{Z}^2$ and establish precise asymptotics for the associated potential kernel and the Green's function of the walk killed upon exiting balls. The result is proven for random walks on i.i.d.
Externí odkaz:
http://arxiv.org/abs/1808.08126