Zobrazeno 1 - 10
of 116
pro vyhledávání: '"gradient dependence"'
Autor:
Frisch Michal Maria, Winkert Patrick
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 1143-1161 (2024)
In this paper, we study coupled elliptic systems with gradient dependent right-hand sides and nonlinear boundary conditions, where the left-hand sides are driven by so-called double phase operators. By applying a surjectivity result for pseudomonoton
Externí odkaz:
https://doaj.org/article/ba97a5391d0441f29f611a91b4bee98b
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-19 (2024)
Abstract We consider the following convective Neumann systems: ( S ) { − Δ p 1 u 1 + | ∇ u 1 | p 1 u 1 + δ 1 = f 1 ( x , u 1 , u 2 , ∇ u 1 , ∇ u 2 ) in Ω , − Δ p 2 u 2 + | ∇ u 2 | p 2 u 2 + δ 2 = f 2 ( x , u 1 , u 2 , ∇ u 1 , ∇ u
Externí odkaz:
https://doaj.org/article/33910121f5964232ad9201b41e8f38ec
Autor:
Giuseppina Barletta
Publikováno v:
Mathematics, Vol 12, Iss 16, p 2506 (2024)
In this note we provide an overview of some existence (with sign information) and regularity results for differential equations, in which the method of sub and supersolutions plays an important role. We list some classical results and then we focus o
Externí odkaz:
https://doaj.org/article/71ae6e8d8a4a4f4bb0062e99f6c6b829
Autor:
Dumitru Motreanu, Angela Sciammetta
Publikováno v:
Axioms, Vol 13, Iss 8, p 497 (2024)
This paper investigates the existence and location of solutions for a Neumann problem driven by a (p,q) Laplacian operator and with a reaction term that depends not only on the solution and its gradient but also incorporates an intrinsic operator, wh
Externí odkaz:
https://doaj.org/article/f768283253cc4fd7a571442d97262ec6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Demonstratio Mathematica, Vol 55, Iss 1, Pp 416-428 (2022)
A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive
Externí odkaz:
https://doaj.org/article/cd296e9985f34707bbe76001ebc976db
Publikováno v:
Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 741-756 (2022)
The existence of a positive entire weak solution to a singular quasi-linear elliptic system with convection terms is established, chiefly through perturbation techniques, fixed point arguments, and a priori estimates. Some regularity results are then
Externí odkaz:
https://doaj.org/article/45a997aedde84532a5601b9d011a63f4
Publikováno v:
Advanced Nonlinear Studies, Vol 20, Iss 4, Pp 895-909 (2020)
In this paper, the existence of smooth positive solutions to a Robin boundary-value problem with non-homogeneous differential operator and reaction given by a nonlinear convection term plus a singular one is established. Proofs chiefly exploit sub-su
Externí odkaz:
https://doaj.org/article/4be05659b3314cf599e7706c747cee1c
Publikováno v:
Advanced Nonlinear Studies, Vol 20, Iss 2, Pp 245-251 (2020)
We consider the elliptic equation -Δu=uq|∇u|p{-\Delta u=u^{q}|\nabla u|^{p}} in ℝn{\mathbb{R}^{n}} for any p>2{p>2} and q>0{q>0}. We prove a Liouville-type theorem, which asserts that any positive bounded solution is constant. The proof
Externí odkaz:
https://doaj.org/article/4eb3f409530c49ad9cca2f5c0274a6d9