Zobrazeno 1 - 10
of 5 439
pro vyhledávání: '"global variance"'
Autor:
Kalla, Jayateja, Biswas, Soma
This paper introduces a two-stage framework designed to enhance long-tail class incremental learning, enabling the model to progressively learn new classes, while mitigating catastrophic forgetting in the context of long-tailed data distributions. Ad
Externí odkaz:
http://arxiv.org/abs/2311.01227
Publikováno v:
He jishu, Vol 47, Iss 2, Pp 109-118 (2024)
BackgroundThe direct simulation of the γ radiation field in a large space has a very low calculation efficiency.PurposeThis study aims to apply the global variance reduction (GVR) method to the calculation of the γ radiation field in a large space.
Externí odkaz:
https://doaj.org/article/c71ee1ff2af5451ebd8013865137752d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Laguzet, Laetitia, Turinici, Gabriel
Publikováno v:
Journal of Computational Physics, Volume 467, 15 October 2022, 111373
We present a population control method with sampling and regulation steps for Monte Carlo particles involved in the numerical simulation of a transport equation. We recall in the first section the difficulties related to the variance reduction method
Externí odkaz:
http://arxiv.org/abs/2301.11922
Publikováno v:
In Fusion Engineering and Design May 2024 202
Publikováno v:
In Fusion Engineering and Design April 2024 201
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Journal of Computational Intelligence Systems, Vol 16, Iss 1, Pp 1-13 (2023)
Abstract As technology improves, how to extract information from vast datasets is becoming more urgent. As is well known, k-nearest neighbor classifiers are simple to implement and conceptually simple to implement. It is not without its shortcomings,
Externí odkaz:
https://doaj.org/article/38365770499647f983b33f06746f4982
Bilevel optimization, the problem of minimizing a value function which involves the arg-minimum of another function, appears in many areas of machine learning. In a large scale empirical risk minimization setting where the number of samples is huge,
Externí odkaz:
http://arxiv.org/abs/2201.13409
Publikováno v:
In Nuclear Engineering and Design 1 December 2023 414