Zobrazeno 1 - 10
of 21
pro vyhledávání: '"giulio galise"'
Autor:
Isabeau Birindelli, Giulio Galise
Publikováno v:
Mathematics in Engineering, Vol 2, Iss 4, Pp 722-733 (2020)
We study entire viscosity solutions of the Allen-Cahn type equation for the truncated Laplacian that are either one dimensional or radial, in order to shed some light on a possible extension of the Gibbons conjecture in this degenerate elliptic setti
Externí odkaz:
https://doaj.org/article/411a817aa5bf428b83fb07a18b798bdc
We introduce some nonlinear extremal nonlocal operators that approximate the, so called, truncated Laplacians. For these operators we construct representation formulas that lead to the construction of what, with an abuse of notation, could be called
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bd4f7774e848679c932e6e2a23cffe9f
http://hdl.handle.net/11573/1650299
http://hdl.handle.net/11573/1650299
In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the $k$-\emph{th fractional truncated Laplacian} or the $k$-\emph{th fractional eigenvalue} which a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42f3c2482176023cc66987bd029949da
Publikováno v:
Mathematische Annalen. 379:909-950
We study the Dirichlet problem on a bounded convex domain of $\mathbb R^N$, with zero boundary data, for truncated Laplacians ${\mathcal P}_k^\pm$, with $k
Comment: 35 pages
Comment: 35 pages
Publikováno v:
Revista Matemática Iberoamericana. 36:723-740
We consider the nonlinear eigenvalue problem, with Dirichlet boundary condition, for the very degenerate elliptic operator P+1 mapping a function u to the maximum eigenvalue of its Hessian matrix. The aim is to show that, at least for square type dom
We study the validity of the comparison and maximum principles and their relation with principal eigenvalues, for a class of degenerate nonlinear operators that are extremal among operators with one-dimensional fractional diffusion.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::95c3810b29253af74310e4c61ba91cc4
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 35:417-441
In this paper we investigate the validity and the consequences of the maximum principle for degenerate elliptic operators whose higher order term is the sum of "k" eigenvalues of the Hessian. In particular we shed some light on some very unusual phen
Publikováno v:
Nonlinear Analysis. 161:198-211
We prove nonexistence results of Liouville type for nonnegative viscosity solutions of some equations involving the fully nonlinear degenerate elliptic operators P k ± , defined respectively as the sum of the largest and the smallest k eigenvalues o
Publikováno v:
Journal of differential equations
We give necessary and sufficient conditions for the existence of positive radial solutions for a class of fully nonlinear uniformly elliptic equations posed in the complement of a ball in RN, and equipped with homogeneous Dirichlet boundary condition
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a47e8b8f75e23df5077bb93c6ad689fc
http://hdl.handle.net/2318/1804364
http://hdl.handle.net/2318/1804364
Publikováno v:
Scopus-Elsevier
We give sufficient conditions for the existence and uniqueness, in bounded uniformly convex domains $\Omega$, of solutions of degenerate elliptic equations depending also on the nonlinear gradient term $H$, in term of the size of $\Omega$, of the for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db8c9ee400f6d2a264f31ebfd443ce2b