Zobrazeno 1 - 10
of 1 497
pro vyhledávání: '"geodesic convexity"'
The dynamics of probability density functions has been extensively studied in science and engineering to understand physical phenomena and facilitate algorithmic design. Of particular interest are dynamics that can be formulated as gradient flows of
Externí odkaz:
http://arxiv.org/abs/2407.15693
Autor:
Chepoi, Victor
Semispaces of a convexity space $(X,C)$ are maximal convex sets missing a point. The separation axiom $S_3$ asserts that any point $x_0\in X$ and any convex set $A$ not containing $x_0$ can be separated by complementary halfspaces (convex sets with c
Externí odkaz:
http://arxiv.org/abs/2405.07512
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alimisis, Foivos, Vandereycken, Bart
We study the convergence of the Riemannian steepest descent algorithm on the Grassmann manifold for minimizing the block version of the Rayleigh quotient of a symmetric matrix. Even though this problem is non-convex in the Euclidean sense and only ve
Externí odkaz:
http://arxiv.org/abs/2209.03480
The matrix normal model, the family of Gaussian matrix-variate distributions whose covariance matrix is the Kronecker product of two lower dimensional factors, is frequently used to model matrix-variate data. The tensor normal model generalizes this
Externí odkaz:
http://arxiv.org/abs/2110.07583
Autor:
Alexandre, Raphaël
Some nilpotent Lie groups possess a transformation group analogous to the similarity group acting on the Euclidean space. We call such a pair a nilpotent similarity structure. It is notably the case for all Carnot groups and their dilatations. We gen
Externí odkaz:
http://arxiv.org/abs/2003.03169
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Functional Analysis 15 October 2020 279(7)
Let $\pi:\mc{X}\to \mc{T}$ be Teichm\"uller curve over Teichm\"uller space $\mc{T}$, such that the fiber $\mc{X}_z=\pi^{-1}(z)$ is exactly the Riemann surface given by the complex structure $z\in \mc{T}$. For a fixed Riemannian manifold $M$ and a con
Externí odkaz:
http://arxiv.org/abs/1809.00255