Zobrazeno 1 - 4
of 4
pro vyhledávání: '"generalized operator of fractional integrodifferentiation"'
Autor:
Oleg A Repin
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 18, Iss 2, Pp 22-32 (2014)
We investigate a nonlocal boundary value problem for the equation of special type. For $y > 0$ it is the equation of fractional diffusion, which contains partial fractional derivative of Riemann-Liouville. For $y < 0$ it is the hyperbolic type equati
Externí odkaz:
https://doaj.org/article/f5ed8223af6b4adeba1129bb4dc7b846
Autor:
Anna V Tarasenko
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 17, Iss 3, Pp 21-28 (2013)
The unique solvability of the problem with the generalized operators of fractional integro-differentiation in the boundary condition is investigated for the mixed type equation. The uniqueness theorem for the nonlocal problem is proved. The proof of
Externí odkaz:
https://doaj.org/article/fff477cddec9494f85935a7be1e672d8
A problem with the operator M. Saigo in the boundary condition for a loaded heat conduction equation
Autor:
Anna V Tarasenko
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 16, Iss 3, Pp 41-46 (2012)
The existence of a unique solution of the non-classical boundary value problem for the heat equation, the loaded value of the desired function $u(x, y)$ on the boundary $x = 0$ of the rectangular area $\Omega= \{ (x, t) : 0$ < $x$ < $l$, $0$ < $t$ <
Externí odkaz:
https://doaj.org/article/e00da87e6baa4f2cbb54332312247881
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.