Zobrazeno 1 - 10
of 100
pro vyhledávání: '"fractional q-difference equation"'
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 32, Iss 3, Pp 5-32 (2024)
This paper is devoted to the study of a fractional q-difference equation involving dual hybrid terms and equipped with nonlocal multipoint and Riemann-Liouville fractional q-integral boundary conditions. Applying a fixed point approach, we investigat
Externí odkaz:
https://doaj.org/article/860bfe3977e447a09bd7f49fb2adf3cc
Publikováno v:
Electronic Research Archive, Vol 32, Iss 2, Pp 1044-1066 (2024)
In this paper, we consider the existence of positive solutions for a system of fractional $ q $-difference equations with generalized $ p $-Laplacian operators. By using Guo-Krasnosel'skii fixed point theorem, we obtain some existence results of posi
Externí odkaz:
https://doaj.org/article/e6236cd0061448988807c921b495a83f
Publikováno v:
Journal of Innovative Applied Mathematics and Computational Sciences (2023)
This paper aims to explore the existence results of a certain type of Caputo fractional qq-difference equations in Banach spaces. To achieve this goal, we employ a fixed point theorem that relies on the concept of measure of noncompactness and the co
Externí odkaz:
https://doaj.org/article/bd81c9f60f1e40d4a9a8ae73ce8ec2d6
Autor:
Abdellatif Boutiara, Maamar Benbachir, Mohammed K. A. Kaabar, Francisco Martínez, Mohammad Esmael Samei, Melike Kaplan
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-27 (2022)
Abstract In this work, a proposed system of fractional boundary value problems is investigated concerning its unbounded solutions’ existence for a class of nonlinear fractional q-difference equations in the context of the Riemann–Liouville fracti
Externí odkaz:
https://doaj.org/article/e6941987774a43789e98f3ed06e608d9
Autor:
Abdelatif Boutiara, Sina Etemad, Jehad Alzabut, Azhar Hussain, Muthaiah Subramanian, Shahram Rezapour
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-23 (2021)
Abstract In this paper, we consider a nonlinear sequential q-difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville fractional quantum integrals in four points. In
Externí odkaz:
https://doaj.org/article/e498ecfa28074eb0a2e9b18822b07761
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-11 (2020)
Abstract In this paper, we investigate the existence of positive solutions for a class of fractional boundary value problems involving q-difference. By using the fixed point theorem of cone mappings, two existence results are obtained. Examples are g
Externí odkaz:
https://doaj.org/article/fc55dac7548e4a93a75db2d6b0894207
Publikováno v:
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-19 (2019)
Abstract This paper deals with some existence, uniqueness, and Ulam stability results for a coupled implicit Caputo fractional q-difference system in Banach and generalized Banach spaces. Some applications are made of some fixed point theorems for th
Externí odkaz:
https://doaj.org/article/c77a1bb4f4304bb897dc1f8441770ec4
Publikováno v:
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-12 (2019)
Abstract This paper deals with some existence, uniqueness and Ulam–Hyers–Rassias stability results for a class of implicit fractional q-difference equations. Some applications are made of some fixed point theorems in Banach spaces for the existen
Externí odkaz:
https://doaj.org/article/3e924c4c4a8f4dfc8ea8b0256d4cfe72
Publikováno v:
Fractal and Fractional, Vol 6, Iss 11, p 689 (2022)
Fractional q-calculus plays an extremely important role in mathematics and physics. In this paper, we aim to investigate the existence of triple-positive solutions for nonlinear singular fractional q-difference equation boundary value problems at res
Externí odkaz:
https://doaj.org/article/da58239f330c403ea0a17a057c6d3d79