Zobrazeno 1 - 10
of 1 087
pro vyhledávání: '"fractional p(.)-Laplacian"'
Publikováno v:
Demonstratio Mathematica, Vol 57, Iss 1, Pp 025005-590 (2024)
The primary focus of this work lies in the exploration of the limiting dynamics governing fractional stochastic discrete wave equations with nonlinear noise. First, we establish the well-posedness of solutions to these stochastic equations and subseq
Externí odkaz:
https://doaj.org/article/96795635cb4447ba8c7f5954a5c0291c
Autor:
Elhoussain Arhrrabi, Hamza El-Houari
Publikováno v:
Cubo, Vol 26, Iss 3, Pp 407-430 (2024)
This study extensively investigates a specific category of Kirchhoff-Schrödinger systems in fractional Sobolev space with Dirichlet boundary conditions. The main focus is on exploring the existence and multiplicity of non-negative solutions. The non
Externí odkaz:
https://doaj.org/article/74535d2b34034d92b79077a54a9db550
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 80-3229 (2024)
In this article, we first introduce a new fractional gg-Laplacian Monge-Ampère operator: Fgsv(x)≔infP.V.∫Rngv(z)−v(x)∣C−1(z−x)∣sdz∣C−1(z−x)∣n+s∣C∈C,{F}_{g}^{s}v\left(x):= \inf \left\{\hspace{0.1em}\text{P.V.}\hspace{0.1em}\
Externí odkaz:
https://doaj.org/article/a0fa1b38a19e4f80ad64fed200477235
Autor:
Yuxin Chen, Haidong Liu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 34, Pp 1-8 (2024)
In the present paper, we study the nonexistence of nontrivial weak solutions to a class of fractional $p$-Laplacian equation in two cases which are $sp > N$ and $sp < N$. In each of these cases, by using fractional Laplacian theory and inequality tec
Externí odkaz:
https://doaj.org/article/53cf925c3fdb42feb4bb1ab694e47825
Autor:
Ye Dong, Zhang Weimin
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 4, Pp 895-921 (2024)
We investigate the following fractional p-Laplacian convex-concave problem:(Pλ)(−Δ)psu=λ|u|q−2u+|u|ps*−2u inΩ,u=0 inRn\Ω, $$\left({P}_{\lambda }\right) \begin{cases}\begin{aligned}\hfill {\left(-{\Delta}\right)}_{p}^{s}u& =\lambda \vert u{
Externí odkaz:
https://doaj.org/article/a5bf1201811d4e1cb4e7da6f18e74167
Autor:
Mahir Hasanov
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 12800-12813 (2024)
We have studied initial value problems for Caputo fractional differential equations with singular nonlinearities involving the p-Laplacian operator. We have given a precise mathematical analysis of the equivalence of the fractional differential equat
Externí odkaz:
https://doaj.org/article/87903b5d74c847da8b9c137b56f0eb33
Autor:
Appolloni, Luigi
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 June 2025 546(1)
Publikováno v:
Communications in Analysis and Mechanics, Vol 15, Iss 4, Pp 586-597 (2023)
In this paper, we consider the following discrete fractional $ p $-Laplacian equations: $ \begin{equation*} (-\Delta_{1})^{s}_{p}u(a)+V(a)|u(a)|^{p-2}u(a) = \lambda f(a, u(a)), \; \mbox{in}\ \mathbb{Z}, \end{equation*} $ where $ \lambda $ is the
Externí odkaz:
https://doaj.org/article/8908121d51c94563b1cb5e2cd735ad83
Autor:
Yun-Ho Kim, Hyeon Yeol Na
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 26896-26921 (2023)
The aim of this paper is to establish the existence of a sequence of infinitely many small energy solutions to nonlocal problems of Kirchhoff type involving Hardy potential. To this end, we used the Dual Fountain Theorem as a key tool. In particular,
Externí odkaz:
https://doaj.org/article/9053fd87f2e949da9d51640b834938d5
Publikováno v:
Advanced Nonlinear Studies, Vol 23, Iss 1, Pp 2661-773 (2023)
This article deals with existence of solutions to the following fractional pp-Laplacian system of equations: (−Δp)su=∣u∣ps*−2u+γαps*∣u∣α−2u∣v∣βinΩ,(−Δp)sv=∣v∣ps*−2v+γβps*∣v∣β−2v∣u∣αinΩ,\left\{\begin{arr
Externí odkaz:
https://doaj.org/article/bb1166c98c4647d993dd88d6a9da9fe1