Zobrazeno 1 - 10
of 4 398
pro vyhledávání: '"fractional p(.)-Laplacian"'
In this paper, we study the local boundedness of local weak solutions to the following parabolic equation associated with fractional $p$-Laplacian type operators $$ \partial_t u(t,x)-\text{p.v.}\int_{\R^d}|u(t,y)-u(t,x)|^{p-2}(u(t,y)-u(t,x))J(t;x,y)\
Externí odkaz:
http://arxiv.org/abs/2412.03770
Autor:
Iannizzotto, Antonio, Porru, Giovanni
We discuss two optimization problems related to the fractional $p$-Laplacian. First, we prove the existence of at least one minimizer for the principal eigenvalue of the fractional $p$-Laplacian with Dirichlet conditions, with a bounded weight functi
Externí odkaz:
http://arxiv.org/abs/2411.10088
In this paper, we study a nonlinear system involving a generalized tempered fractional $p$-Laplacian in $B_{1}(0)$: \begin{equation*} \left\{ \begin{array}{ll} \partial_tu(x,t)+(-\Delta-\lambda_{f})_{p}^{s}u(x,t)=g(t,u(x,t)), &(x,t)\in B_{1}(0)\times
Externí odkaz:
http://arxiv.org/abs/2411.00449
We study a Dirichlet problem driven by the (degenerate or singular) fractional $p$-Laplacian and involving a $(p-1)$-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti-Rabinowitz condition. Using critical point theory, trunca
Externí odkaz:
http://arxiv.org/abs/2411.10119
Autor:
Iannizzotto, Antonio
We survey some recent regularity results for fractional p-Laplacian elliptic equations, especially focusing on pure and weighted boundary H\"older continuity of the solutions of related Dirichlet problems. Then, we present some applications of such r
Externí odkaz:
http://arxiv.org/abs/2411.03159
In this paper, we prove the existence and the uniqueness of a weak and mild solution of the following nonlinear parabolic problem involving the porous $p$-fractional Laplacian: \begin{equation*} \begin{cases} \partial_t u+(-\Delta)^s_p(|u|^{m-1}u)=h(
Externí odkaz:
http://arxiv.org/abs/2411.14260
Autor:
Yu, Pengxiu
In this paper, we assume that $q>0$, $p>1$ and $s\in(0,1)$ , and consider the following nonlinear fractional p-Laplacian equations on finite graphs: \begin{equation*} \left\{ \begin{array}{lll} \partial_t u^q(x,t)+(-\Delta)_p^su=0,\\[15pt] u(x,t)|_{t
Externí odkaz:
http://arxiv.org/abs/2409.14304
Autor:
Iannizzotto, A., Mosconi, S.
We prove a bifurcation result for a Dirichlet problem driven by the fractional $p$-Laplacian (either degenerate or singular), in which the reaction is the difference between two sublinear powers of the unknown. In our argument, a fundamental role is
Externí odkaz:
http://arxiv.org/abs/2409.03616
In this work, we study the existence and multiplicity of solutions for the following problem \begin{equation}\label{probaa1} \left\{ \begin{aligned} -(\Delta)_{p}^{s} u + V(x)|u|^{p-2}u &= \lambda f(u),&x\in\Omega; u&=0,&x\in \R^{N}\backslash\Omega,
Externí odkaz:
http://arxiv.org/abs/2408.05644