Zobrazeno 1 - 10
of 1 006
pro vyhledávání: '"fractional Schrödinger equation"'
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-20 (2024)
Abstract In this article, we propose a split-step finite element method (FEM) for the two-dimensional nonlinear Schrödinger equation (NLS) with Riesz fractional derivatives in space. The space-fractional NLS is first spatially discretized by finite
Externí odkaz:
https://doaj.org/article/c5034375e86443bcbb09eb0be5aeb183
Autor:
Joel Elías Escudero-Gómez, Ernesto Alejandro Mendoza Álvarez, Guillermo Fernández Anaya, José Job Flores-Godoy, Leo Diago Cisneros
Publikováno v:
Nova Scientia, Vol 16, Iss 33 (2024)
Fractional calculus is becoming increasingly important nowadays in studying and understanding fundamental physical phenomena, both simple and complex, through the formulation of generalized models. In the present work, a treatment of non-integer orde
Externí odkaz:
https://doaj.org/article/c9ab6f2d30c142dab93772a4045b62ee
Autor:
Xizheng Sun, Zhiqing Han
Publikováno v:
AIMS Mathematics, Vol 9, Iss 8, Pp 21641-21655 (2024)
In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity$ \begin{eqnarray*} \left\{ \begin{array}{lll} (-\Delta)^su = \lambda u+|u|^{p-2}u+|u|^{2^\ast_s-2}u, & x\in \mathbb{R}^N, \\ \int_{\math
Externí odkaz:
https://doaj.org/article/cf75ca45074f4e888a541408e993a80c
Autor:
Muhammad Nadeem, Yahya Alsayaad
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Abstract This work presents the analytical study of one dimensional time-fractional nonlinear Schrödinger equation arising in quantum mechanics. In present research, we establish an idea of the Sumudu transform residual power series method (ST-RPSM)
Externí odkaz:
https://doaj.org/article/541b10bce0624eb48bdefaf3d2d374ed
Autor:
Rui Sun, Weihua Deng
Publikováno v:
Communications in Analysis and Mechanics, Vol 16, Iss 2, Pp 262-277 (2024)
In this work, by stochastic analyses, we study stochastic representation, well-posedness, and regularity of generalized time fractional Schrödinger equation $ \begin{equation*} \left\{\begin{aligned} \partial_t^wu(t,x)& = \mathcal{L} u(t,x)-\kapp
Externí odkaz:
https://doaj.org/article/7576aab871e6418fb2baf127a5cd3539
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 10536-10560 (2024)
Our aim of this paper was to present the accurate analytical approximate series solutions to the time-fractional Schrödinger equations via the Caputo fractional operator using the Laplace residual power series technique. Furthermore, three important
Externí odkaz:
https://doaj.org/article/b9ac69d5fa4445b3a23f2e7b33180c26
Autor:
Varshini Sandrasekaran, Ravikumar Kasinathan, Ramkumar Kasinathan, Dimplekumar Chalishajar, Dhanalakshmi Kasinathan
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 10, Iss , Pp 100713- (2024)
Establishing the fractional stochastic Schrödinger equations (FSSEs) in Hilbert space with complex potential and Poisson jumps is the primary goal of this work. Stochastic analysis, Mönch fixed point theorem, fractional calculus, and semigroup theo
Externí odkaz:
https://doaj.org/article/221e9c739b774d4c9df876a951fae51e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation April 2024 131
Publikováno v:
Quantum Reports, Vol 5, Iss 3, Pp 546-564 (2023)
In physics, mathematics, and other disciplines, new integrable equations have been found using the P-test. Novel insights and discoveries in several domains have resulted from this. Whether a solution is oscillatory, decaying, or expanding exponentia
Externí odkaz:
https://doaj.org/article/1ebc6c4befab4e0c9c42bdb1f273b8f3