Zobrazeno 1 - 10
of 569
pro vyhledávání: '"fountain theorem"'
Publikováno v:
Opuscula Mathematica, Vol 44, Iss 6, Pp 789-814 (2024)
The aim of this work is to present a result of multiplicity of solutions, in generalized Sobolev spaces, for a non-local elliptic problem with \(p(x)\)-Laplace operator containing \(k\) distinct critical Sobolev-Hardy exponents combined with singular
Externí odkaz:
https://doaj.org/article/49f82fd9cda94d06ba584199e89aa526
Autor:
Mohsen Timoumi
Publikováno v:
Sahand Communications in Mathematical Analysis, Vol 21, Iss 1, Pp 237-254 (2024)
This article concerns the existence of fast homoclinic solutions for the following damped vibration system\begin{equation*}\frac{d}{dt}(P(t)\dot{u}(t))+q(t)P(t)\dot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0,\end{equation*}where $P,L\in C\left(\mathbb{R},\mat
Externí odkaz:
https://doaj.org/article/3fc806a9317c4d90858b8ad7070ba110
Publikováno v:
Electronic Journal of Differential Equations, Vol 2024, Iss 18,, Pp 1-11 (2024)
Externí odkaz:
https://doaj.org/article/04996501464b4321b832c550811864fa
Autor:
Yun-Ho Kim, Hyeon Yeol Na
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 26896-26921 (2023)
The aim of this paper is to establish the existence of a sequence of infinitely many small energy solutions to nonlocal problems of Kirchhoff type involving Hardy potential. To this end, we used the Dual Fountain Theorem as a key tool. In particular,
Externí odkaz:
https://doaj.org/article/9053fd87f2e949da9d51640b834938d5
Autor:
Yun-Ho Kim
Publikováno v:
AIMS Mathematics, Vol 8, Iss 4, Pp 9461-9482 (2023)
This paper is devoted to deriving several multiplicity results of nontrivial weak solutions to Kirchhoff-Schrödinger equations involving the p(⋅)-Laplace-type operator. The aims of this paper are stated as follows. First, under some conditions on
Externí odkaz:
https://doaj.org/article/a976a56ca7ce4f34a043fd51fcd80ed1
Autor:
Shuhai Zhu
Publikováno v:
AIMS Mathematics, Vol 8, Iss 7, Pp 16320-16339 (2023)
We are concerned with the following Schrödinger type equation with variable exponents $ \begin{equation*} (-\Delta_{p(x)})^{s}u+V(x)|u|^{p(x)-2}u = f(x, u)\, \, \, \, \text{in}\, \, \, \, \mathbb{R}^{N}, \end{equation*} $ where $ (-\Delta_{p(x)}
Externí odkaz:
https://doaj.org/article/2aa6f5b76b194a5580e721d6c47df0bc
Autor:
Khiddi Mustapha, Essafi Lakbir
Publikováno v:
Demonstratio Mathematica, Vol 55, Iss 1, Pp 831-842 (2022)
In this article, we will prove the existence of infinitely many solutions for a class of quasilinear Schrödinger equations without assuming the 4-superlinear at infinity on the nonlinearity. We achieve our goal by using the Fountain theorem.
Externí odkaz:
https://doaj.org/article/438c8cd083ce4bd3a95a1f8b3bf89370
Autor:
Robert Stegliński
Publikováno v:
Opuscula Mathematica, Vol 42, Iss 5, Pp 751-761 (2022)
Using the Dual Fountain Theorem we obtain some existence of infinitely many solutions for local and nonlocal elliptic equations with variable exponent. Our results correct some of the errors that have appeared recently in the literature.
Externí odkaz:
https://doaj.org/article/80508850e192468d95a8ad5b0733239e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AIMS Mathematics, Vol 7, Iss 7, Pp 13258-13270 (2022)
In this paper we use the topological degree and the fountain theorem to study the existence of weak solutions for a fractional p-Laplacian equation in a bounded domain. For the nonlinearity f, we consider two situations: (1) the non-resonance case wh
Externí odkaz:
https://doaj.org/article/c6eaa3462fd44fd08302ca607f938cec