Zobrazeno 1 - 10
of 158
pro vyhledávání: '"fisher vectors"'
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 2058-2069 (2021)
Superpixel segmentation is an important technique for image analysis. In this article, we develop a new superpixel segmentation approach and investigate its application on ship target detection in marine synthetic aperture radar (SAR) images. Existin
Externí odkaz:
https://doaj.org/article/62a8cf098eda4ad3ad9834e3bc4404c5
Publikováno v:
IET Computer Vision, Vol 10, Iss 5, Pp 392-397 (2016)
Automatic analysis of human behaviour in large collections of videos is rapidly gaining interest, even more so with the advent of file sharing sites such as YouTube. From one perspective, it can be observed that the size of feature vectors used for h
Externí odkaz:
https://doaj.org/article/c4049b2b67d54fd29e4bb18f172d18c9
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 2058-2069 (2021)
Superpixel segmentation is an important technique for image analysis. In this article, we develop a new superpixel segmentation approach and investigate its application on ship target detection in marine synthetic aperture radar (SAR) images. Existin
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Artificial Intelligence Review. 54:1969-2009
Persistent homology (PH) is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs) which are 2D multisets of points. Their variable size makes them, however, difficult to combine with typica
Autor:
Mohamed Touafria, Qiang Yang
Publikováno v:
Sensors, Vol 18, Iss 10, p 3218 (2018)
This article discusses the issue of Automatic Target Recognition (ATR) on Synthetic Aperture Radar (SAR) images. Through learning the hierarchy of features automatically from a massive amount of training data, learning networks such as Convolutional
Externí odkaz:
https://doaj.org/article/591a6edd5f9745d8bebf6f05f419f14f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Computer Vision and Image Understanding
Computer Vision and Image Understanding, Elsevier, 2018, 176-177, pp.9-21. ⟨10.1016/j.cviu.2018.10.004⟩
Computer Vision and Image Understanding, 2018, 176-177, pp.9-21. ⟨10.1016/j.cviu.2018.10.004⟩
Computer Vision and Image Understanding, Elsevier, 2018, 176-177, pp.9-21. ⟨10.1016/j.cviu.2018.10.004⟩
Computer Vision and Image Understanding, 2018, 176-177, pp.9-21. ⟨10.1016/j.cviu.2018.10.004⟩
We propose a novel weakly supervised localization method based on Fisher-embedding of low-level features (CNN, SIFT), and model sparsity at the component level. Fisher-embedding provides an interesting alternative to raw low-level features, since it
Publikováno v:
Remote Sensing, Vol 8, Iss 6, p 470 (2016)
Automatic crowd detection in aerial images is certainly a useful source of information to prevent crowd disasters in large complex scenarios of mass events. A number of publications employ regression-based methods for crowd counting and crowd density
Externí odkaz:
https://doaj.org/article/42f624f188e840b1a114aabc7847a86f