Zobrazeno 1 - 10
of 477
pro vyhledávání: '"finite precision error"'
Publikováno v:
In Information Sciences April 2023 621:782-798
Autor:
Zhang, Chengrui1 (AUTHOR), Chen, Dongming1 (AUTHOR) chendm@mail.neu.edu.cn, Wang, Dongqi1 (AUTHOR)
Publikováno v:
International Journal of Bifurcation & Chaos in Applied Sciences & Engineering. Dec2024, p1. 25p.
A novel technique based on the Full Orthogonalization Arnoldi (FOA) is proposed to perform Dynamic Mode Decomposition (DMD) for a sequence of snapshots. A modification to FOA is presented for situations where the matrix $A$ is unknown, but the set of
Externí odkaz:
http://arxiv.org/abs/1805.05821
Autor:
Becker, Heiko, Zyuzin, Nikita, Monat, Raphael, Darulova, Eva, Myreen, Magnus O., Fox, Anthony
Being able to soundly estimate roundoff errors of finite-precision computations is important for many applications in embedded systems and scientific computing. Due to the discrepancy between continuous reals and discrete finite-precision values, aut
Externí odkaz:
http://arxiv.org/abs/1707.02115
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena June 2019 123:69-78
Publikováno v:
In Journal of Computational Physics 1 March 2019 380:355-377
Autor:
Constantinos Chalatsis, Constantin Papaodysseus, Dimitris Arabadjis, Athanasios Rafail Mamatsis, Nikolaos V. Karadimas
Publikováno v:
Informatics, Vol 8, Iss 3, p 54 (2021)
A first aim of the present work is the determination of the actual sources of the “finite precision error” generation and accumulation in two important algorithms: Bernoulli’s map and the folded Baker’s map. These two computational schemes at
Externí odkaz:
https://doaj.org/article/15e96af268f841218b0cfca17b96d3c5
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Digital Signal Processing August 2018 79:75-90
Autor:
Constantin Papaodysseus, Dimitris Arabadjis, Fotios Giannopoulos, Athanasios Rafail Mamatsis, Constantinos Chalatsis
Publikováno v:
Mathematics, Vol 9, Iss 11, p 1199 (2021)
In the present paper, a novel approach is introduced for the study, estimation and exact tracking of the finite precision error generated and accumulated during any number of multiplications. It is shown that, as a rule, this operation is very “tox
Externí odkaz:
https://doaj.org/article/686c8de3d0644948ac1570731bfee69e