Zobrazeno 1 - 10
of 101
pro vyhledávání: '"fejér type inequality"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-11 (2024)
Abstract The Hermite–Hadamard–Fejér-type inequality is an effective utensil for examining upper and lower estimations of the integrals of convex functions. In this study, the power mean inequality and Hölder inequality are employed. The outcome
Externí odkaz:
https://doaj.org/article/151a253929c1447bb7cf88cdacfc51c2
Publikováno v:
Journal of Inequalities and Applications, Vol 2023, Iss 1, Pp 1-20 (2023)
Abstract In this paper, we investigate the properties of a newly introduced class of functions, strongly reciprocally (p, h)-convex functions of higher order. We establish Hermite–Hadamard-type and Fejér-type inequalities for this class of functio
Externí odkaz:
https://doaj.org/article/fa88dd93244d4fa8acde7f389a75a8f1
Autor:
Sikander Mehmood, Pshtiwan Othman Mohammed, Artion Kashuri, Nejmeddine Chorfi, Sarkhel Akbar Mahmood, Majeed A. Yousif
Publikováno v:
Symmetry, Vol 16, Iss 4, p 407 (2024)
There is a strong correlation between the concept of convexity and symmetry. One of these is the class of interval-valued cr-log-h-convex functions, which is closely related to the theory of symmetry. In this paper, we obtain Hermite–Hadamard and i
Externí odkaz:
https://doaj.org/article/056ae254eafe4339a2d0f4ce46c218a9
Publikováno v:
AIMS Mathematics, Vol 8, Iss 3, Pp 7437-7470 (2023)
To create various kinds of inequalities, the idea of convexity is essential. Convexity and integral inequality hence have a significant link. This study's goals are to introduce a new class of generalized convex fuzzy-interval-valued functions (conve
Externí odkaz:
https://doaj.org/article/465ecd2762d143869c031cc7cf9384d6
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-12 (2022)
Abstract The main purpose of this paper is to study certain inequalities for cr-log-h-convex functions with an interval value. To this end, we first give a definition of cr-log-h-convexity of interval-valued functions under the cr-order and study som
Externí odkaz:
https://doaj.org/article/fea5f9b4965e4b23a7f09bbec633132a
Publikováno v:
Mathematics, Vol 12, Iss 3, p 382 (2024)
This note introduces a new class of preinvexity called (h1,h2)-Godunova-Levin preinvex functions that generalize earlier findings. Based on these notions, we developed Hermite-Hadamard, weighted Fejér, and trapezium type inequalities. Furthermore, w
Externí odkaz:
https://doaj.org/article/1c0b584493704866ad284768833b4ead
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Khan Muhammad Bilal, Noor Muhammad Aslam, Macías-Díaz Jorge E., Soliman Mohamed S., Zaini Hatim Ghazi
Publikováno v:
Demonstratio Mathematica, Vol 55, Iss 1, Pp 387-403 (2022)
It is a well-known fact that inclusion and pseudo-order relations are two different concepts which are defined on the interval spaces, and we can define different types of convexities with the help of both relations. By means of pseudo-order relation
Externí odkaz:
https://doaj.org/article/4f0fc98d7f034627a0e74f8ea515f85c
Autor:
Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja
Publikováno v:
AIMS Mathematics, Vol 7, Iss 8, Pp 15041-15063 (2022)
The aim of this research is to combine the concept of inequalities with fractional integral operators, which are the focus of attention due to their properties and frequency of usage. By using a novel fractional integral operator that has an exponent
Externí odkaz:
https://doaj.org/article/83dadd5188be48d984903646112d2411
Autor:
Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed
Publikováno v:
AIMS Mathematics, Vol 7, Iss 3, Pp 4338-4358 (2022)
The inclusion relation and the order relation are two distinct ideas in interval analysis. Convexity and nonconvexity create a significant link with different sorts of inequalities under the inclusion relation. For many classes of convex and nonconve
Externí odkaz:
https://doaj.org/article/9e2079cef775497593feefc9dca9795b