Zobrazeno 1 - 3
of 3
pro vyhledávání: '"facteurs d'approximation"'
Autor:
Benoit, Anne, Le Fèvre, Valentin, Perotin, Lucas, Raghavan, Padma, Robert, Yves, Sun, Hongyang
Publikováno v:
[Research Report] RR-9340, Inria-Research Centre Grenoble – Rhône-Alpes. 2021
We study the resilient scheduling of moldable parallel jobs on high-performance computing (HPC) platforms. Moldable jobs allow for choosing a processor allocation before execution, and their execution time obeys various speedup models. The objective
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3393::ab93c7472648ec65a4d360364a333ee1
https://inria.hal.science/hal-02614215
https://inria.hal.science/hal-02614215
Autor:
Benoit, Anne, Le Fèvre, Valentin, Perotin, Lucas, Raghavan, Padma, Robert, Yves, Sun, Hongyang
Publikováno v:
[Research Report] RR-9340, Inria-Research Centre Grenoble – Rhône-Alpes. 2020
[Research Report] RR-9340, Inria-Research Centre Grenoble – Rhône-Alpes. 2021
[Research Report] RR-9340, Inria-Research Centre Grenoble – Rhône-Alpes. 2021
This paper focuses on the resilient scheduling of moldable parallel jobson high-performance computing (HPC) platforms. Moldable jobs allow for choosing aprocessor allocation before execution, and their execution time obeys various speedup models. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::250aea526190e8a3dff8aa9082926af1
https://hal.inria.fr/hal-02614215
https://hal.inria.fr/hal-02614215
Publikováno v:
IPDPS Workshops
APDCM 2020-Workshop on Advances in Parallel and Distributed Computational Models (colocated with IPDPS)
APDCM 2020-Workshop on Advances in Parallel and Distributed Computational Models (colocated with IPDPS), May 2020, New Orleans, LA, United States. pp.1-27
[Research Report] RR-9296, Inria-Research Centre Grenoble – Rhône-Alpes. 2019, pp.31
APDCM 2020-Workshop on Advances in Parallel and Distributed Computational Models (colocated with IPDPS)
APDCM 2020-Workshop on Advances in Parallel and Distributed Computational Models (colocated with IPDPS), May 2020, New Orleans, LA, United States. pp.1-27
[Research Report] RR-9296, Inria-Research Centre Grenoble – Rhône-Alpes. 2019, pp.31
This paper focuses on the resilient scheduling of parallel jobs on highperformance computing (HPC) platforms to minimize the overall completion time, or makespan. We revisit the problem by assuming that jobs are subject to transient or silent errors,