Zobrazeno 1 - 10
of 52
pro vyhledávání: '"faber polynomial expansion"'
Publikováno v:
Journal of Mahani Mathematical Research, Vol 12, Iss 2, Pp 431-441 (2023)
In this paper, we introduce a newly defined subclass $\mathcal{S}_{\Sigma}(\vartheta,\gamma,\eta;\varphi) $ of bi-univalent functions by using the Tremblay differential operator satisfying subordinate conditions in the unit disk. Moreover, we use the
Externí odkaz:
https://doaj.org/article/16d78dbbb0aa4b6d8041270868c0d7c9
Autor:
Chetan Swarup
Publikováno v:
Symmetry, Vol 15, Iss 7, p 1407 (2023)
In this study, we applied the ideas of subordination and the symmetric q-difference operator and then defined the novel class of bi-univalent functions of complex order γ. We used the Faber polynomial expansion method to determine the upper bounds f
Externí odkaz:
https://doaj.org/article/d4c00b97976e45f49d0d6a2d08cd7c7e
Publikováno v:
AIMS Mathematics, Vol 6, Iss 9, Pp 9126-9137 (2021)
In this paper, coefficient bounds of bi-univalent functions in certain two subclasses, which are defined by subordination are estimated. Some special outcomes of the main results are also presented. Moreover, it is remarked that the given bounds impr
Externí odkaz:
https://doaj.org/article/ccdabc4c628246ab902bb9e054b5e170
Publikováno v:
Axioms, Vol 12, Iss 6, p 600 (2023)
Using the concepts of q-fractional calculus operator theory, we first define a (λ,q)-differintegral operator, and we then use m-fold symmetric functions to discover a new family of bi-close-to-convex functions. First, we estimate the general Taylor
Externí odkaz:
https://doaj.org/article/5553d5cab3944f539da1c053331a7bf3
Autor:
H. M. Srivastava, Sheza M. El-Deeb
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 7087-7106 (2020)
In this paper, we introduce a new class of analytic and bi-close-to-convex functions connected with q-convolution, which are defined in the open unit disk. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this subcl
Externí odkaz:
https://doaj.org/article/181a1d590a2c45d8bb1d7a2835c1d740
Publikováno v:
Mathematics, Vol 11, Iss 5, p 1217 (2023)
In this investigation, the q-difference operator and the Sălăgean q-differential operator are utilized to establish novel subclasses of analytical bi-close-to-convex functions. We determine the general Taylor–Maclaurin coefficient of the function
Externí odkaz:
https://doaj.org/article/6c96925138a4415985931d7993e5bbdc
Publikováno v:
Axioms; Volume 12; Issue 6; Pages: 600
Using the concepts of q-fractional calculus operator theory, we first define a (λ,q)-differintegral operator, and we then use m-fold symmetric functions to discover a new family of bi-close-to-convex functions. First, we estimate the general Taylor
Publikováno v:
Axioms, Vol 10, Iss 1, p 27 (2021)
In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in thi
Externí odkaz:
https://doaj.org/article/fc0c5efd6d6d48e2bf3889220a2b8df7
Publikováno v:
Mathematics, Vol 8, Iss 2, p 172 (2020)
In this article, we introduce a general family of analytic and bi-univalent functions in the open unit disk, which is defined by applying the principle of differential subordination between analytic functions and the Tremblay fractional derivative op
Externí odkaz:
https://doaj.org/article/73fcd65863414ad2b31c151d0d349489
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.