Zobrazeno 1 - 10
of 168
pro vyhledávání: '"faber polynomial"'
Publikováno v:
Axioms, Vol 13, Iss 8, p 509 (2024)
In this article, the authors use the Faber polynomial expansions to find the general coefficient estimates for a few new subclasses of bi-univalent functions with bounded boundary rotation and bounded radius rotation. Some of the results improve the
Externí odkaz:
https://doaj.org/article/6437867efa964806826b443523a5744b
Publikováno v:
Journal of Mahani Mathematical Research, Vol 12, Iss 2, Pp 431-441 (2023)
In this paper, we introduce a newly defined subclass $\mathcal{S}_{\Sigma}(\vartheta,\gamma,\eta;\varphi) $ of bi-univalent functions by using the Tremblay differential operator satisfying subordinate conditions in the unit disk. Moreover, we use the
Externí odkaz:
https://doaj.org/article/16d78dbbb0aa4b6d8041270868c0d7c9
Autor:
Sheza M. El-Deeb, Serap Bulut
Publikováno v:
Mathematica Bohemica, Vol 148, Iss 1, Pp 49-64 (2023)
We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $q$-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions
Externí odkaz:
https://doaj.org/article/a4c6d900cb81402c9ad2e547e2494cc7
Publikováno v:
Fractal and Fractional, Vol 7, Iss 12, p 883 (2023)
In this study, we begin by examining the τ-fractional differintegral operator and proceed to establish a novel subclass in the open unit disk E. The determination of the nth coefficient bound for functions within this recently established class is a
Externí odkaz:
https://doaj.org/article/86053790bd4c45ccae2edde8d2a00968
Publikováno v:
AIMS Mathematics, Vol 7, Iss 2, Pp 2989-3005 (2022)
In this paper, we introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomi
Externí odkaz:
https://doaj.org/article/079478b7a19e4db381c44ba5b9e7b8a2
Autor:
Chetan Swarup
Publikováno v:
Symmetry, Vol 15, Iss 7, p 1407 (2023)
In this study, we applied the ideas of subordination and the symmetric q-difference operator and then defined the novel class of bi-univalent functions of complex order γ. We used the Faber polynomial expansion method to determine the upper bounds f
Externí odkaz:
https://doaj.org/article/d4c00b97976e45f49d0d6a2d08cd7c7e
Publikováno v:
AIMS Mathematics, Vol 6, Iss 9, Pp 9126-9137 (2021)
In this paper, coefficient bounds of bi-univalent functions in certain two subclasses, which are defined by subordination are estimated. Some special outcomes of the main results are also presented. Moreover, it is remarked that the given bounds impr
Externí odkaz:
https://doaj.org/article/ccdabc4c628246ab902bb9e054b5e170
Autor:
Hari Mohan Srivastava, Isra Al-Shbeil, Qin Xin, Fairouz Tchier, Shahid Khan, Sarfraz Nawaz Malik
Publikováno v:
Axioms, Vol 12, Iss 6, p 585 (2023)
By utilizing the concept of the q-fractional derivative operator and bi-close-to-convex functions, we define a new subclass of A, where the class A contains normalized analytic functions in the open unit disk E and is invariant or symmetric under rot
Externí odkaz:
https://doaj.org/article/fdfc1784265841cca6cc10e13638eb40
Publikováno v:
Axioms, Vol 12, Iss 6, p 600 (2023)
Using the concepts of q-fractional calculus operator theory, we first define a (λ,q)-differintegral operator, and we then use m-fold symmetric functions to discover a new family of bi-close-to-convex functions. First, we estimate the general Taylor
Externí odkaz:
https://doaj.org/article/5553d5cab3944f539da1c053331a7bf3
Autor:
Abdullah Alsoboh, Ala Amourah, Fethiye Müge Sakar, Osama Ogilat, Gharib Mousa Gharib, Nasser Zomot
Publikováno v:
Axioms, Vol 12, Iss 6, p 512 (2023)
The paper introduces a new family of analytic bi-univalent functions that are injective and possess analytic inverses, by employing a q-analogue of the derivative operator. Moreover, the article establishes the upper bounds of the Taylor–Maclaurin
Externí odkaz:
https://doaj.org/article/9f53a724340f41d4aa77976819d6e2e8