Zobrazeno 1 - 10
of 23
pro vyhledávání: '"f 36"'
Publikováno v:
Frontiers in Immunology, Vol 15 (2024)
BackgroundThe house dust mite (HDM) is widely recognized as the most prevalent allergen in allergic diseases. Allergen-specific immunotherapy (AIT) has been successfully implemented in clinical treatment for HDM. Hypoallergenic B-cell epitope-based v
Externí odkaz:
https://doaj.org/article/d62357ef17aa49269283484371ea892d
Autor:
Funar, Louis
Publikováno v:
Topology and geometry - A collection of essays dedicated to Vladimir G. Turaev, ed. A. Papadopoulos, European Mathematical Society Publishing House, Berlin, 2021, 273--308
The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out
Externí odkaz:
http://arxiv.org/abs/2009.05961
Autor:
Decker Frank
Publikováno v:
Jahrbuch für Wirtschaftsgeschichte, Vol 63, Iss 2, Pp 375-407 (2022)
This article examines the monetary arrangements between Australia, New Zealand and the United Kingdom from the 1820s to the 1930s. It is argued that the three countries formed a monetary union for most of this period. A new analysis of inland and Lon
Externí odkaz:
https://doaj.org/article/d0394fdf764f47fa80d4c46a9384154d
Autor:
Funar, Louis, Lochak, Pierre
Publikováno v:
Commun. Math. Phys. 360(2018), 1061-1082
Using quantum representations of mapping class groups we prove that profinite completions of Burnside-type surface group quotients are not virtually prosolvable, in general. Further, we construct infinitely many finite simple characteristic quotients
Externí odkaz:
http://arxiv.org/abs/1702.07866
Publikováno v:
Handbook of Teichmuller spaces III, A.Papadopoulos, Ed., 595--664, 2012
We consider Thompson's groups from the perspective of mapping class groups of surfaces of infinite type. This point of view leads us to the braided Thompson groups, which are extensions of Thompson's groups by infinite (spherical) braid groups. We wi
Externí odkaz:
http://arxiv.org/abs/1105.0559
Autor:
Funar, Louis
Publikováno v:
Proc.Amer.Math.Soc. 139(2011), 375-382
We show that central extensions of the mapping class group $M_g$ of the closed orientable surface of genus $g$ by $\Z$ are residually finite. Further we give rough estimates of the largest $N=N_g$ such that homomorphisms from $M_g$ to SU(N) have fini
Externí odkaz:
http://arxiv.org/abs/0910.1491
Autor:
Funar, Louis, Sergiescu, Vlad
The central extension of the Thompson group $T$ that arises in the quantized Teichm\"uller theory is 12 times the Euler class. This extension is obtained by taking a (partial) abelianization of the so-called braided Ptolemy-Thompson group introduced
Externí odkaz:
http://arxiv.org/abs/0802.2996
Autor:
Funar, Louis, Kapoudjian, Christophe
Publikováno v:
Geom. Topol. 12 (2008) 475-530
Pursueing our investigations on the relations between Thompson groups and mapping class groups, we introduce the group $T^*$ (and its further generalizations) which is an extension of the Ptolemy-Thompson group $T$ by means of the full braid group $B
Externí odkaz:
http://arxiv.org/abs/math/0506397
Autor:
Funar, Louis
We prove that the image of the mapping class group by the representations arising in the SU(2)-TQFT is infinite, provided that the genus is bigger than 2 and the level r of the theory is different from 2,3,4,6. In particular the quotient of the mappi
Externí odkaz:
http://arxiv.org/abs/math/9804047
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.