Zobrazeno 1 - 10
of 71
pro vyhledávání: '"exponential lattices"'
Given a set $S \subseteq \mathbb{R}^2$, define the \emph{Helly number of $S$}, denoted by $H(S)$, as the smallest positive integer $N$, if it exists, for which the following statement is true: for any finite family $\mathcal{F}$ of convex sets in~$\m
Externí odkaz:
http://arxiv.org/abs/2301.04683
Publikováno v:
In European Journal of Combinatorics February 2024 116
Inspired by Aomoto's $q$-Selberg integral, the orthogonal ensemble in the exponential lattice is considered in this paper. By introducing a skew symmetric kernel, the configuration space of this ensemble is constructed to be symmetric and thus, corre
Externí odkaz:
http://arxiv.org/abs/2206.08633
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
O.R. Hillig
A description is given of measurements required to determine the values of thermal utilization for U-10 wt.% Mo fuel elements in hexagonal lattices of three different spacings. The discussion includes a description of the lattice cells, and a graphic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::62c014478a73c4d075ce1a490d7cd162
https://doi.org/10.2172/4091804
https://doi.org/10.2172/4091804
Autor:
O R Hillig
The results of detailed neutron flux distribution measurements, in several lattice cells containing 8-rod UC fhel elements, and values of thermal utilization are presented. These measurements were made in three lattices where the 3 wt% enriched UC fu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::149c61702373b2f887c7aa38c16f9547
https://doi.org/10.2172/4804918
https://doi.org/10.2172/4804918
Autor:
Ruffing, Andreas L.
Publikováno v:
Progress of Theoretical Physics Supplement; 20130516, Vol. 139 Issue: 0 p404-404, 1p
Autor:
J. C. Medem, Renato Alvarez-Nodarse
Publikováno v:
Journal of Computational and Applied Mathematics. 135:197-223
In this paper we continue the study of the q -classical (discrete) polynomials (in the Hahn's sense) started in Medem et al. (this issue, Comput. Appl. Math. 135 (2001) 157–196). Here we will compare our scheme with the well known q -Askey scheme a
Autor:
Arun, Srinivas, Dillon, Travis
Given a set $S \subseteq \mathbb{R}^d$, an empty polytope has vertices in $S$ but contains no other point of $S$. Empty polytopes are closely related to so-called Helly numbers, which extend Helly's theorem to more general point sets in $\mathbb{R}^d
Externí odkaz:
http://arxiv.org/abs/2409.07262