Zobrazeno 1 - 10
of 26 156
pro vyhledávání: '"ensemble machine learning"'
Autor:
Khadidos, Alaa O.1,2 (AUTHOR), Saleem, Farrukh3 (AUTHOR), Selvarajan, Shitharth4,5 (AUTHOR) shitharths@kdu.edu.et, Ullah, Zahid6 (AUTHOR), Khadidos, Adil O.7 (AUTHOR)
Publikováno v:
Scientific Reports. 9/14/2024, Vol. 14 Issue 1, p1-20. 20p.
Autor:
Luo, Yanping1 (AUTHOR) luoyanping@stu.ouc.edu.cn, Liu, Yang1 (AUTHOR) yangliu315@ouc.edu.cn, Huang, Chuanyang1 (AUTHOR), Han, Fangcheng1 (AUTHOR)
Publikováno v:
Remote Sensing. Sep2024, Vol. 16 Issue 17, p3148. 31p.
Autor:
Khaksar, Aram, Hassani, Hossein
Hawrami, a dialect of Kurdish, is classified as an endangered language as it suffers from the scarcity of data and the gradual loss of its speakers. Natural Language Processing projects can be used to partially compensate for data availability for en
Externí odkaz:
http://arxiv.org/abs/2409.16884
Ensemble methods are powerful machine learning algorithms that combine multiple models to enhance prediction capabilities and reduce generalization errors. However, their potential to generate effective test cases for fault detection in a System Unde
Externí odkaz:
http://arxiv.org/abs/2409.04651
Autor:
Lee, Tsair-Fwu1,2,3 (AUTHOR), Liu, Yen-Hsien1 (AUTHOR), Chang, Chu-Ho1 (AUTHOR), Chiu, Chien-Liang1 (AUTHOR), Lin, Chih-Hsueh1 (AUTHOR), Shao, Jen-Chung1 (AUTHOR), Yen, Yu-Cheng1 (AUTHOR), Lin, Guang-Zhi1 (AUTHOR), Yang, Jack4 (AUTHOR), Tseng, Chin-Dar1 (AUTHOR), Fang, Fu-Min5 (AUTHOR), Chao, Pei-Ju5 (AUTHOR) pjchao99@gmail.com, Lee, Shen-Hao1,6 (AUTHOR) leeshenhao@gmail.com
Publikováno v:
Radiation Oncology. 6/24/2024, Vol. 19 Issue 1, p1-11. 11p.
Autor:
Lu, Yongxing1 (AUTHOR) luyongxing@mail.cgs.gov.cn, Xu, Honggen1 (AUTHOR) xuhonggen@mail.cgs.gov.cn, Wang, Can2 (AUTHOR) canwang_hndzgczx@163.com, Yan, Guanxi3 (AUTHOR) guanxi.yan@uqconnect.edu.au, Huo, Zhitao1 (AUTHOR) huozhitao@mail.cgs.gov.cn, Peng, Zuwu4 (AUTHOR), Liu, Bo3,5 (AUTHOR) lbo@hhu.edu.cn, Xu, Chong6 (AUTHOR) chongxu@ninhm.ac.cn
Publikováno v:
Remote Sensing. Oct2024, Vol. 16 Issue 19, p3663. 32p.
Autor:
Jung, Inkee, Lau, Siu-Cheong
We present a local-to-global and measure-theoretical approach to understanding datasets. The core idea is to formulate a logifold structure and to interpret network models with restricted domains as local charts of datasets. In particular, this provi
Externí odkaz:
http://arxiv.org/abs/2407.16177