Zobrazeno 1 - 10
of 7 244
pro vyhledávání: '"emotion intensity"'
Human emotional expression is inherently dynamic, complex, and fluid, characterized by smooth transitions in intensity throughout verbal communication. However, the modeling of such intensity fluctuations has been largely overlooked by previous audio
Externí odkaz:
http://arxiv.org/abs/2409.19501
We propose FEIM-TTS, an innovative zero-shot text-to-speech (TTS) model that synthesizes emotionally expressive speech, aligned with facial images and modulated by emotion intensity. Leveraging deep learning, FEIM-TTS transcends traditional TTS syste
Externí odkaz:
http://arxiv.org/abs/2409.16203
This study explores the use of large language models (LLMs) to predict emotion intensity in Polish political texts, a resource-poor language context. The research compares the performance of several LLMs against a supervised model trained on an annot
Externí odkaz:
http://arxiv.org/abs/2407.12141
Labeling corpora constitutes a bottleneck to create models for new tasks or domains. Large language models mitigate the issue with automatic corpus labeling methods, particularly for categorical annotations. Some NLP tasks such as emotion intensity p
Externí odkaz:
http://arxiv.org/abs/2403.17612
Autor:
Savchenko, Andrey V.
This article presents our results for the sixth Affective Behavior Analysis in-the-wild (ABAW) competition. To improve the trustworthiness of facial analysis, we study the possibility of using pre-trained deep models that extract reliable emotional f
Externí odkaz:
http://arxiv.org/abs/2403.11590
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jin, Menghan1,2 (AUTHOR) 202031061023@mail.bnu.edu.cn, Peng, Huamao1,2 (AUTHOR) penghuamao@bnu.edu.cn
Publikováno v:
Behavioral Sciences (2076-328X). Apr2024, Vol. 14 Issue 4, p299. 14p.
Existing fine-grained intensity regulation methods rely on explicit control through predicted emotion probabilities. However, these high-level semantic probabilities are often inaccurate and unsmooth at the phoneme level, leading to bias in learning.
Externí odkaz:
http://arxiv.org/abs/2307.00020
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
People associate affective meanings to words - "death" is scary and sad while "party" is connotated with surprise and joy. This raises the question if the association is purely a product of the learned affective imports inherent to semantic meanings,
Externí odkaz:
http://arxiv.org/abs/2202.12132