Zobrazeno 1 - 10
of 311
pro vyhledávání: '"eigenvariety"'
Autor:
Ludwig, Judith
These are extended lecture notes for a mini course at the Spring School on Non-Archimedean Geometry and Eigenvarieties held at Heidelberg University in March 2023. The goal of the course is to explain a modern take on the eigenvariety machine in the
Externí odkaz:
http://arxiv.org/abs/2407.18073
Autor:
Dimitrov, Mladen, Hsu, Chi-Yun
Let $F$ be a totally real field and $p$ a rational prime unramified in $F$. For each subset $P$ of primes of $F$ above $p$, there is the notion of partially classical Hilbert modular forms, where $P=\varnothing$ recovers the overconvergent forms and
Externí odkaz:
http://arxiv.org/abs/2403.09784
We present a comprehensive study of the geometry of Hilbert $p$-adic eigenvarieties at parallel weight one intersection points of their cuspidal and Eisenstein loci. The Galois theoretic approach presents genuine difficulties due to the lack of good
Externí odkaz:
http://arxiv.org/abs/2311.08361
Friedberg--Jacquet proved that if $\pi$ is a cuspidal automorphic representation of $\mathrm{GL}_{2n}(\mathbb{A})$, $\pi$ is a functorial transfer from $\mathrm{GSpin}_{2n+1}$ if and only if a global zeta integral $Z_H$ over $H = \mathrm{GL}_n \times
Externí odkaz:
http://arxiv.org/abs/2308.02649
In this paper, we prove that a $\mathrm{GL}(2n)$-eigenvariety is \'etale over the (pure) weight space at non-critical Shalika points, and construct multi-variable $p$-adic $L$-functions varying over the resulting Shalika components. Our constructions
Externí odkaz:
http://arxiv.org/abs/2211.08126
Autor:
Wu, Zhixiang
We prove the existence of all companion points on the eigenvariety of definite unitary groups associated with generic crystalline Galois representations with possibly non-regular weights under the Taylor-Wiles hypothesis, based on the previous result
Externí odkaz:
http://arxiv.org/abs/2108.13879
Autor:
Wu, Ju-Feng
In the present paper, we first construct a pairing on the space of analytic distributions associated with $\mathrm{GSp}_{2g}$. By considering the overconvergent parabolic cohomology groups and following the work of Johansson--Newton, we construct the
Externí odkaz:
http://arxiv.org/abs/2005.04776
Let $F$ be a totally real field and $\mathscr{E}$ the middle-degree eigenvariety for Hilbert modular forms over $F$, constructed by Bergdall--Hansen. We study the ramification locus of $\mathscr{E}$ in relation to the $p$-adic properties of adjoint $
Externí odkaz:
http://arxiv.org/abs/2011.05237
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $F$ be a totally real number field and let $f$ be a classical cuspidal $p$-regular Hilbert modular eigenform over $F$ of parallel weight $1$. Let $x$ be the point on the $p$-adic Hilbert eigenvariety $\mathcal E$ corresponding to an ordinary $p$-
Externí odkaz:
http://arxiv.org/abs/1806.11540