Zobrazeno 1 - 8
of 8
pro vyhledávání: '"dotti, sylvain"'
Autor:
Dotti, Sylvain
Nous étudions dans cette thèse, une loi de conservation scalaire hyperbolique d’ordre un avec terme source stochastique et flux non-linéaire. Le terme source stochastique peut être considéré comme la superposition d’une infinité de bruits
Externí odkaz:
http://www.theses.fr/2017AIXM0568/document
Autor:
DOTTI, SYLVAIN1 sylvain.dotti@univ-reunion.fr
Publikováno v:
International Journal of Numerical Analysis & Modeling. 2024, Vol. 21 Issue 1, p120-164. 45p.
Autor:
Dotti, Sylvain, Vovelle, Julien
We prove the convergence of the explicit-in-time Finite Volume method with monotone fluxes for the approximation of scalar first-order conservation laws with multiplicative, compactly supported noise.
Comment: Added the error term in (2.9), whic
Comment: Added the error term in (2.9), whic
Externí odkaz:
http://arxiv.org/abs/1611.00983
Autor:
Dotti, Sylvain, Vovelle, Julien
We develop a general framework for the analysis of approximations to stochastic scalar conservation laws. Our aim is to prove, under minimal consistency properties and bounds, that such approximations are converging to the solution to a stochastic sc
Externí odkaz:
http://arxiv.org/abs/1611.00984
Autor:
Dotti, Sylvain, Vovelle, Julien
Publikováno v:
Stochastic Partial Differential Equations: Analysis and Computations; 20240101, Issue: Preprints p1-46, 46p
Autor:
Dotti, Sylvain1, Vovelle, Julien2 vovelle@math.univ-lyon1.fr
Publikováno v:
Archive for Rational Mechanics & Analysis. Nov2018, Vol. 230 Issue 2, p539-591. 53p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
dotti, sylvain
Publikováno v:
Analysis of PDEs [math.AP]. Aix-Marseille Université (AMU), 2017. English
In this thesis, we study a scalar hyperbolic conservation law of order one, withstochastic source term and non-linear flux. The source term can be seen as thesuperposition of an infinity of Gaussian noises depending on the conserved quantity.We give
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f4201652a5debdd605a7bbd180e3db7a
https://tel.archives-ouvertes.fr/tel-01661124
https://tel.archives-ouvertes.fr/tel-01661124