Zobrazeno 1 - 10
of 1 134
pro vyhledávání: '"div-curl lemma"'
Publikováno v:
SIAM Journal on Numerical Analysis, 2006 Jan 01. 43(1), 116-126.
Externí odkaz:
https://www.jstor.org/stable/4101254
Autor:
WAURICK, MARCUS
Publikováno v:
Journal of Operator Theory, 2018 Jan 01. 80(1), 95-111.
Externí odkaz:
https://www.jstor.org/stable/27226215
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pauly, Dirk
We prove a global version of the so-called div-curl-lemma, a crucial result for compensated compactness and in homogenization theory, for mixed tangential and normal boundary conditions in bounded weak Lipschitz domains in 3D and weak Lipschitz inter
Externí odkaz:
http://arxiv.org/abs/1808.01234
Autor:
Pauly, Dirk
We prove global and local versions of the so-called div-curl-lemma, a crucial result in the homogenization theory of partial differential equations, for mixed boundary conditions on bounded weak Lipschitz domains in 3D with weak Lipschitz interfaces.
Externí odkaz:
http://arxiv.org/abs/1707.00019
Autor:
Waurick, Marcus
We present an abstract functional analytic formulation of the celebrated $\dive$-$\curl$ lemma found by F.~Murat and L.~Tartar. The viewpoint in this note relies on sequences for operators in Hilbert spaces. Hence, we draw the functional analytic rel
Externí odkaz:
http://arxiv.org/abs/1703.09593
Autor:
Polisevski, Dan
The Div-Curl Lemma, which is the basic result of the compensated compactness theory in Sobolev spaces, was introduced by F. Murat (1978) with distinct proofs for the $L^2(\Omega)$ and $L^p(\Omega)$, $p \neq 2$, cases. In this note we present a slight
Externí odkaz:
http://arxiv.org/abs/0712.2133
Publikováno v:
Comptes Rendus Math. 349 (2011), 175-178
It is shown that $u_k \cdot v_k$ converges weakly to $u\cdot v$ if $u_k\weakto u$ weakly in $L^p$ and $v_k\weakly v$ weakly in $L^q$ with $p, q\in (1,\infty)$, $1/p+1/q=1$, under the additional assumptions that the sequences $\Div u_k$ and $\curl v_k
Externí odkaz:
http://arxiv.org/abs/0907.0397
We give a div-curl type lemma for the wedge product of closed differential forms on R^n when they have coefficients respectively in a Hardy space and L^infinity or BMO. In this last case, the wedge product belongs to an appropriate Hardy-Orlicz space
Externí odkaz:
http://arxiv.org/abs/0811.2044
Publikováno v:
Publicacions Matemàtiques, 2010 Jan 01. 54(2), 341-358.
Externí odkaz:
https://www.jstor.org/stable/43736948